Cargando…
A Maximal Correlation Framework for Fair Machine Learning
As machine learning algorithms grow in popularity and diversify to many industries, ethical and legal concerns regarding their fairness have become increasingly relevant. We explore the problem of algorithmic fairness, taking an information–theoretic view. The maximal correlation framework is introd...
Autores principales: | Lee, Joshua, Bu, Yuheng, Sattigeri, Prasanna, Panda, Rameswar, Wornell, Gregory W., Karlinsky, Leonid, Schmidt Feris, Rogerio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027582/ https://www.ncbi.nlm.nih.gov/pubmed/35455124 http://dx.doi.org/10.3390/e24040461 |
Ejemplares similares
-
Interventional Fairness with Indirect Knowledge of Unobserved Protected Attributes
por: Galhotra, Sainyam, et al.
Publicado: (2021) -
Differential Fairness: An Intersectional Framework for Fair AI †
por: Islam, Rashidul, et al.
Publicado: (2023) -
A United States Fair Lending Perspective on Machine Learning
por: Hall, Patrick, et al.
Publicado: (2021) -
Signal processing with fractals: a wavelet-based approach
por: Wornell, Gregory
Publicado: (1996) -
Enabling Fairness in Healthcare Through Machine Learning
por: Grote, Thomas, et al.
Publicado: (2022)