Cargando…
Machine-Learning-Based Noninvasive In Vivo Estimation of HbA1c Using Photoplethysmography Signals
Glycated hemoglobin (HbA1c) is an important factor in monitoring diabetes. Since the glycated hemoglobin value reflects the average blood glucose level over 3 months, it is not affected by exercise or food intake immediately prior to measurement. Thus, it is used as the most basic measure of evaluat...
Autores principales: | Kwon, Tae-Ho, Kim, Ki-Doo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027622/ https://www.ncbi.nlm.nih.gov/pubmed/35458947 http://dx.doi.org/10.3390/s22082963 |
Ejemplares similares
-
A Comparative Analysis of Various Machine Learning Algorithms to Improve the Accuracy of HbA1c Estimation Using Wrist PPG Data
por: Satter, Shama, et al.
Publicado: (2023) -
Cuffless Blood Pressure Estimation Based on Monte Carlo Simulation Using Photoplethysmography Signals
por: Haque, Chowdhury Azimul, et al.
Publicado: (2022) -
Optical Measurement of Molar Absorption Coefficient of HbA1c: Comparison of Theoretical and Experimental Results
por: Hossain, Shifat, et al.
Publicado: (2022) -
Noninvasive In Vivo Estimation of Blood-Glucose Concentration by Monte Carlo Simulation
por: Haque, Chowdhury Azimul, et al.
Publicado: (2021) -
90% Accuracy for Photoplethysmography-Based Non-Invasive Blood Glucose Prediction by Deep Learning with Cohort Arrangement and Quarterly Measured HbA1c
por: Chu, Justin, et al.
Publicado: (2021)