Cargando…

High Proton-Conductive and Temperature-Tolerant PVC-P4VP Membranes towards Medium-Temperature Water Electrolysis

Water electrolysis (WE) is a highly promising approach to producing clean hydrogen. Medium-temperature WE (100–350 °C) can improve the energy efficiency and utilize the low-grade water vapor. Therefore, a high-temperature proton-conductive membrane is desirable to realize the medium-temperature WE....

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Yichen, Ying, Yiming, Liu, Guojuan, Chen, Huiling, Fan, Jingrui, Li, Zhi, Wang, Chuhao, Guo, Zhuangyan, Zeng, Gaofeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027779/
https://www.ncbi.nlm.nih.gov/pubmed/35448332
http://dx.doi.org/10.3390/membranes12040363
Descripción
Sumario:Water electrolysis (WE) is a highly promising approach to producing clean hydrogen. Medium-temperature WE (100–350 °C) can improve the energy efficiency and utilize the low-grade water vapor. Therefore, a high-temperature proton-conductive membrane is desirable to realize the medium-temperature WE. Here, we present a polyvinyl chloride (PVC)-poly(4vinylpyridine) (P4VP) hybrid membrane by a simple cross-linking of PVC and P4VP. The pyridine groups of P4VP promote the loading rate of phosphoric acid, which delivers the proton conductivity of the PVC-P4VP membrane. The optimized PVC-P4VP membrane with a 1:2 content ratio offers the maximum proton conductivity of 4.3 × 10(−2) S cm(−1) at 180 °C and a reliable conductivity stability in 200 h at 160 °C. The PVC-P4VP membrane electrode is covered by an IrO(2) anode, and a Pt/C cathode delivers not only the high water electrolytic reactivity at 100–180 °C but also the stable WE stability at 180 °C.