Cargando…
Acute Exercise with Moderate Hypoxia Reduces Arterial Oxygen Saturation and Cerebral Oxygenation without Affecting Hemodynamics in Physically Active Males
Hemodynamic changes during exercise in acute hypoxia (AH) have not been completely elucidated. The present study aimed to investigate hemodynamics during an acute bout of mild, dynamic exercise during moderate normobaric AH. Twenty-two physically active, healthy males (average age; range 23–40 years...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027900/ https://www.ncbi.nlm.nih.gov/pubmed/35457425 http://dx.doi.org/10.3390/ijerph19084558 |
_version_ | 1784691482735673344 |
---|---|
author | Mulliri, Gabriele Magnani, Sara Roberto, Silvana Ghiani, Giovanna Sechi, Fabio Fanni, Massimo Marini, Elisabetta Stagi, Silvia Lai, Ylenia Rinaldi, Andrea Isola, Raffaella Vargiu, Romina Spranger, Marty D. Crisafulli, Antonio |
author_facet | Mulliri, Gabriele Magnani, Sara Roberto, Silvana Ghiani, Giovanna Sechi, Fabio Fanni, Massimo Marini, Elisabetta Stagi, Silvia Lai, Ylenia Rinaldi, Andrea Isola, Raffaella Vargiu, Romina Spranger, Marty D. Crisafulli, Antonio |
author_sort | Mulliri, Gabriele |
collection | PubMed |
description | Hemodynamic changes during exercise in acute hypoxia (AH) have not been completely elucidated. The present study aimed to investigate hemodynamics during an acute bout of mild, dynamic exercise during moderate normobaric AH. Twenty-two physically active, healthy males (average age; range 23–40 years) completed a cardiopulmonary test on a cycle ergometer to determine their maximum workload (W(max)). On separate days, participants performed two randomly assigned exercise tests (three minutes pedaling at 30% of W(max)): (1) during normoxia (NORMO), and (2) during normobaric AH at 13.5% inspired oxygen (HYPO). Hemodynamics were assessed with impedance cardiography, and peripheral arterial oxygen saturation (SatO(2)) and cerebral oxygenation (Cox) were measured by near-infrared spectroscopy. Hemodynamic responses (heart rate, stroke volume, cardiac output, mean arterial blood pressure, ventricular emptying rate, and ventricular filling rate) were not any different between NORMO and HYPO. However, the HYPO test significantly reduced both SatO(2) (96.6 ± 3.3 vs. 83.0 ± 4.5%) and Cox (71.0 ± 6.6 vs. 62.8 ± 7.4 A.U.) when compared to the NORMO test. We conclude that an acute bout of mild exercise during acute moderate normobaric hypoxia does not induce significant changes in hemodynamics, although it can cause significant reductions in SatO(2) and Cox. |
format | Online Article Text |
id | pubmed-9027900 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90279002022-04-23 Acute Exercise with Moderate Hypoxia Reduces Arterial Oxygen Saturation and Cerebral Oxygenation without Affecting Hemodynamics in Physically Active Males Mulliri, Gabriele Magnani, Sara Roberto, Silvana Ghiani, Giovanna Sechi, Fabio Fanni, Massimo Marini, Elisabetta Stagi, Silvia Lai, Ylenia Rinaldi, Andrea Isola, Raffaella Vargiu, Romina Spranger, Marty D. Crisafulli, Antonio Int J Environ Res Public Health Article Hemodynamic changes during exercise in acute hypoxia (AH) have not been completely elucidated. The present study aimed to investigate hemodynamics during an acute bout of mild, dynamic exercise during moderate normobaric AH. Twenty-two physically active, healthy males (average age; range 23–40 years) completed a cardiopulmonary test on a cycle ergometer to determine their maximum workload (W(max)). On separate days, participants performed two randomly assigned exercise tests (three minutes pedaling at 30% of W(max)): (1) during normoxia (NORMO), and (2) during normobaric AH at 13.5% inspired oxygen (HYPO). Hemodynamics were assessed with impedance cardiography, and peripheral arterial oxygen saturation (SatO(2)) and cerebral oxygenation (Cox) were measured by near-infrared spectroscopy. Hemodynamic responses (heart rate, stroke volume, cardiac output, mean arterial blood pressure, ventricular emptying rate, and ventricular filling rate) were not any different between NORMO and HYPO. However, the HYPO test significantly reduced both SatO(2) (96.6 ± 3.3 vs. 83.0 ± 4.5%) and Cox (71.0 ± 6.6 vs. 62.8 ± 7.4 A.U.) when compared to the NORMO test. We conclude that an acute bout of mild exercise during acute moderate normobaric hypoxia does not induce significant changes in hemodynamics, although it can cause significant reductions in SatO(2) and Cox. MDPI 2022-04-10 /pmc/articles/PMC9027900/ /pubmed/35457425 http://dx.doi.org/10.3390/ijerph19084558 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mulliri, Gabriele Magnani, Sara Roberto, Silvana Ghiani, Giovanna Sechi, Fabio Fanni, Massimo Marini, Elisabetta Stagi, Silvia Lai, Ylenia Rinaldi, Andrea Isola, Raffaella Vargiu, Romina Spranger, Marty D. Crisafulli, Antonio Acute Exercise with Moderate Hypoxia Reduces Arterial Oxygen Saturation and Cerebral Oxygenation without Affecting Hemodynamics in Physically Active Males |
title | Acute Exercise with Moderate Hypoxia Reduces Arterial Oxygen Saturation and Cerebral Oxygenation without Affecting Hemodynamics in Physically Active Males |
title_full | Acute Exercise with Moderate Hypoxia Reduces Arterial Oxygen Saturation and Cerebral Oxygenation without Affecting Hemodynamics in Physically Active Males |
title_fullStr | Acute Exercise with Moderate Hypoxia Reduces Arterial Oxygen Saturation and Cerebral Oxygenation without Affecting Hemodynamics in Physically Active Males |
title_full_unstemmed | Acute Exercise with Moderate Hypoxia Reduces Arterial Oxygen Saturation and Cerebral Oxygenation without Affecting Hemodynamics in Physically Active Males |
title_short | Acute Exercise with Moderate Hypoxia Reduces Arterial Oxygen Saturation and Cerebral Oxygenation without Affecting Hemodynamics in Physically Active Males |
title_sort | acute exercise with moderate hypoxia reduces arterial oxygen saturation and cerebral oxygenation without affecting hemodynamics in physically active males |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027900/ https://www.ncbi.nlm.nih.gov/pubmed/35457425 http://dx.doi.org/10.3390/ijerph19084558 |
work_keys_str_mv | AT mullirigabriele acuteexercisewithmoderatehypoxiareducesarterialoxygensaturationandcerebraloxygenationwithoutaffectinghemodynamicsinphysicallyactivemales AT magnanisara acuteexercisewithmoderatehypoxiareducesarterialoxygensaturationandcerebraloxygenationwithoutaffectinghemodynamicsinphysicallyactivemales AT robertosilvana acuteexercisewithmoderatehypoxiareducesarterialoxygensaturationandcerebraloxygenationwithoutaffectinghemodynamicsinphysicallyactivemales AT ghianigiovanna acuteexercisewithmoderatehypoxiareducesarterialoxygensaturationandcerebraloxygenationwithoutaffectinghemodynamicsinphysicallyactivemales AT sechifabio acuteexercisewithmoderatehypoxiareducesarterialoxygensaturationandcerebraloxygenationwithoutaffectinghemodynamicsinphysicallyactivemales AT fannimassimo acuteexercisewithmoderatehypoxiareducesarterialoxygensaturationandcerebraloxygenationwithoutaffectinghemodynamicsinphysicallyactivemales AT marinielisabetta acuteexercisewithmoderatehypoxiareducesarterialoxygensaturationandcerebraloxygenationwithoutaffectinghemodynamicsinphysicallyactivemales AT stagisilvia acuteexercisewithmoderatehypoxiareducesarterialoxygensaturationandcerebraloxygenationwithoutaffectinghemodynamicsinphysicallyactivemales AT laiylenia acuteexercisewithmoderatehypoxiareducesarterialoxygensaturationandcerebraloxygenationwithoutaffectinghemodynamicsinphysicallyactivemales AT rinaldiandrea acuteexercisewithmoderatehypoxiareducesarterialoxygensaturationandcerebraloxygenationwithoutaffectinghemodynamicsinphysicallyactivemales AT isolaraffaella acuteexercisewithmoderatehypoxiareducesarterialoxygensaturationandcerebraloxygenationwithoutaffectinghemodynamicsinphysicallyactivemales AT vargiuromina acuteexercisewithmoderatehypoxiareducesarterialoxygensaturationandcerebraloxygenationwithoutaffectinghemodynamicsinphysicallyactivemales AT sprangermartyd acuteexercisewithmoderatehypoxiareducesarterialoxygensaturationandcerebraloxygenationwithoutaffectinghemodynamicsinphysicallyactivemales AT crisafulliantonio acuteexercisewithmoderatehypoxiareducesarterialoxygensaturationandcerebraloxygenationwithoutaffectinghemodynamicsinphysicallyactivemales |