Cargando…
Intrinsic Dimension Estimation-Based Feature Selection and Multinomial Logistic Regression for Classification of Bearing Faults Using Compressively Sampled Vibration Signals
As failures of rolling bearings lead to major failures in rotating machines, recent vibration-based rolling bearing fault diagnosis techniques are focused on obtaining useful fault features from the huge collection of raw data. However, too many features reduce the classification accuracy and increa...
Autores principales: | Ahmed, Hosameldin O. A., Nandi, Asoke K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027945/ https://www.ncbi.nlm.nih.gov/pubmed/35455173 http://dx.doi.org/10.3390/e24040511 |
Ejemplares similares
-
Condition monitoring with vibration signals: compressive sampling and learning algorithms for rotating machines
por: Nandi, Asoke K, et al.
Publicado: (2020) -
Bayesian Lasso and multinomial logistic regression on GPU
por: Češnovar, Rok, et al.
Publicado: (2017) -
Fault Detection and Classification in MMC-HVDC Systems Using Learning Methods
por: Wang, Qinghua, et al.
Publicado: (2020) -
Validation and updating of risk models based on multinomial logistic regression
por: Van Calster, Ben, et al.
Publicado: (2017) -
Minimum sample size for developing a multivariable prediction model using multinomial logistic regression
por: Pate, Alexander, et al.
Publicado: (2023)