Cargando…
Operator compression with deep neural networks
This paper studies the compression of partial differential operators using neural networks. We consider a family of operators, parameterized by a potentially high-dimensional space of coefficients that may vary on a large range of scales. Based on the existing methods that compress such a multiscale...
Autores principales: | Kröpfl, Fabian, Maier, Roland, Peterseim, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028012/ https://www.ncbi.nlm.nih.gov/pubmed/35531267 http://dx.doi.org/10.1186/s13662-022-03702-y |
Ejemplares similares
-
Iris Image Compression Using Deep Convolutional Neural Networks
por: Jalilian, Ehsaneddin, et al.
Publicado: (2022) -
A Novel Low-Bit Quantization Strategy for Compressing Deep Neural Networks
por: Long, Xin, et al.
Publicado: (2020) -
Telemetry Data Compression Algorithm Using Balanced Recurrent Neural Network and Deep Learning
por: Ramalingam, Parameshwaran, et al.
Publicado: (2022) -
Hyperspectral Image Classification with Optimized Compressed Synergic Deep Convolution Neural Network with Aquila Optimization
por: Subba Reddy, Tatireddy, et al.
Publicado: (2022) -
High-Quality Video Watermarking Based on Deep Neural Networks for Video with HEVC Compression †
por: Kaczyński, Maciej, et al.
Publicado: (2022)