Cargando…
Reinforcement Learning for Central Pattern Generation in Dynamical Recurrent Neural Networks
Lifetime learning, or the change (or acquisition) of behaviors during a lifetime, based on experience, is a hallmark of living organisms. Multiple mechanisms may be involved, but biological neural circuits have repeatedly demonstrated a vital role in the learning process. These neural circuits are r...
Autores principales: | Yoder, Jason A., Anderson, Cooper B., Wang, Cehong, Izquierdo, Eduardo J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028035/ https://www.ncbi.nlm.nih.gov/pubmed/35465269 http://dx.doi.org/10.3389/fncom.2022.818985 |
Ejemplares similares
-
Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator
por: Hoellinger, Thomas, et al.
Publicado: (2013) -
Production of adaptive movement patterns via an insect inspired spiking neural network central pattern generator
por: Steinbeck, Fabian, et al.
Publicado: (2022) -
Multimodal bipedal locomotion generation with passive dynamics via deep reinforcement learning
por: Koseki, Shunsuke, et al.
Publicado: (2023) -
Unsupervised Learning and Clustered Connectivity Enhance Reinforcement Learning in Spiking Neural Networks
por: Weidel, Philipp, et al.
Publicado: (2021) -
Biologically Plausible Class Discrimination Based Recurrent Neural Network Training for Motor Pattern Generation
por: Wijesinghe, Parami, et al.
Publicado: (2020)