Cargando…

Mitochondrial Genetics Reinforces Multiple Layers of Interaction in Alzheimer’s Disease

SIMPLE SUMMARY: Nuclear DNA remains the main source of genome-wide loci association in neurodegenerative diseases, only partially accounting for the heritability of Alzheimer’s Disease (AD). In this context, mitochondrial DNA (mtDNA) is gaining more attention. Here, we investigated mitochondrial gen...

Descripción completa

Detalles Bibliográficos
Autores principales: Cavalcante, Giovanna Chaves, Brito, Leonardo Miranda, Schaan, Ana Paula, Ribeiro-dos-Santos, Ândrea, de Araújo, Gilderlanio Santana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028063/
https://www.ncbi.nlm.nih.gov/pubmed/35453630
http://dx.doi.org/10.3390/biomedicines10040880
Descripción
Sumario:SIMPLE SUMMARY: Nuclear DNA remains the main source of genome-wide loci association in neurodegenerative diseases, only partially accounting for the heritability of Alzheimer’s Disease (AD). In this context, mitochondrial DNA (mtDNA) is gaining more attention. Here, we investigated mitochondrial genes and genetic variants that may influence mild cognitive impairment and AD, through an integrative analysis including both differential gene expression and mitochondrial genome-wide epistasis analysis. Our results highlight important layers of interactions involving mitochondrial genetics and suggest specific molecular alterations as potential biomarkers for AD. ABSTRACT: Nuclear DNA has been the main source of genome-wide loci association in neurodegenerative diseases, only partially accounting for the heritability of Alzheimer’s Disease (AD). In this context, mitochondrial DNA (mtDNA) is gaining more attention. Here, we investigated mitochondrial genes and genetic variants that may influence mild cognitive impairment and AD, through an integrative analysis including differential gene expression and mitochondrial genome-wide epistasis. We assessed the expression of mitochondrial genes in different brain tissues from two public RNA-Seq databases (GEO and GTEx). Then, we analyzed mtDNA from the ADNI Cohort and investigated epistasis regarding mitochondrial variants and levels of A [Formula: see text] , TAU, and Phosphorylated TAU (PTAU) from cognitively healthy controls, and both mild cognitive impairment (MCI) and AD cases. We identified multiple differentially expressed mitochondrial genes in the comparisons between cognitively healthy individuals and AD patients. We also found increased protein levels in MCI and AD patients when compared to healthy controls, as well as novel candidate networks of mtDNA epistasis, which included variants in all mitochondrially-encoded oxidative phosphorylation complexes, 12S rRNA and MT-DLOOP. Our results highlight layers of potential interactions involving mitochondrial genetics and suggest specific molecular alterations as potential biomarkers for AD.