Cargando…
The Effectiveness of Predicting Suicidal Ideation through Depressive Symptoms and Social Isolation Using Machine Learning Techniques
(1) Background: Social isolation is a major risk factor for suicidal ideation. In this study, we investigated whether the evaluation of both depression and social isolation in combination could effectively predict suicidal ideation; (2) Methods: A total of 7994 data collected from community resident...
Autores principales: | Kim, Sunhae, Lee, Kounseok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028081/ https://www.ncbi.nlm.nih.gov/pubmed/35455632 http://dx.doi.org/10.3390/jpm12040516 |
Ejemplares similares
-
The Relationships between Abnormal Serum Lipid Levels, Depression, and Suicidal Ideation According to Sex
por: Lee, Kounseok, et al.
Publicado: (2022) -
A Machine Learning Approach for Predicting Wage Workers’ Suicidal Ideation
por: Park, Hwanjin, et al.
Publicado: (2022) -
Screening of Mood Symptoms Using MMPI-2-RF Scales: An Application of Machine Learning Techniques
por: Kim, Sunhae, et al.
Publicado: (2021) -
Using Boosted Machine Learning to Predict Suicidal Ideation by Socioeconomic Status among Adolescents
por: Park, Hwanjin, et al.
Publicado: (2022) -
Detecting suicidal risk using MMPI-2 based on machine learning algorithm
por: Kim, Sunhae, et al.
Publicado: (2021)