Cargando…
Deep learning for spirometry quality assurance with spirometric indices and curves
BACKGROUND: Spirometry quality assurance is a challenging task across levels of healthcare tiers, especially in primary care. Deep learning may serve as a support tool for enhancing spirometry quality. We aimed to develop a high accuracy and sensitive deep learning-based model aiming at assisting hi...
Autores principales: | Wang, Yimin, Li, Yicong, Chen, Wenya, Zhang, Changzheng, Liang, Lijuan, Huang, Ruibo, Liang, Jianling, Tu, Dandan, Gao, Yi, Zheng, Jinping, Zhong, Nanshan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028127/ https://www.ncbi.nlm.nih.gov/pubmed/35448995 http://dx.doi.org/10.1186/s12931-022-02014-9 |
Ejemplares similares
-
Clinical analysis of the “small plateau” sign on the flow-volume curve followed by deep learning automated recognition
por: Wang, Yimin, et al.
Publicado: (2021) -
Deep Learning-Based Analytic Models Based on Flow-Volume Curves for Identifying Ventilatory Patterns
por: Wang, Yimin, et al.
Publicado: (2022) -
Preserved ratio impaired spirometry with or without restrictive spirometric abnormality
por: Miura, Shinichiro, et al.
Publicado: (2023) -
An Alternative Spirometric Measurement. Area under the Expiratory Flow–Volume Curve
por: Ioachimescu, Octavian C., et al.
Publicado: (2020) -
Goodness-of-Fits of the Spirometric Reference Values for Koreans and USA Caucasians to Spirometry Data from Residents of a Region within Chungbuk Province
por: Eom, Sang Yong, et al.
Publicado: (2012)