Cargando…
Preparation of a Novel Nanocomposite and Its Antibacterial Effectiveness against Enterococcus faecalis—An In Vitro Evaluation
The interest in the use of green-mediated synthesis of nanoparticles (NPs) is shown to have increased due to their biocompatibility and reduction of overall production costs. The current study aimed to evaluate a novel nanocomposite (NC) prepared by using a combination of zinc oxide, silver and chit...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028146/ https://www.ncbi.nlm.nih.gov/pubmed/35458249 http://dx.doi.org/10.3390/polym14081499 |
Sumario: | The interest in the use of green-mediated synthesis of nanoparticles (NPs) is shown to have increased due to their biocompatibility and reduction of overall production costs. The current study aimed to evaluate a novel nanocomposite (NC) prepared by using a combination of zinc oxide, silver and chitosan with lemon extract as a cross-linking agent and assessed its antimicrobial effectiveness against Enterococcus faecalis (E. faecalis). The NPs and NC were prepared individually using a modification of previously established methods. Ananalys is of the physiochemical properties of the NC was conducted using ultraviolet-visible spectroscopy (UV-Vis) (Shimadzu Corporation, Kyoto, Japan). and transmission electron microscopy (TEM) imaging(HR-TEM; JEOL Ltd., Akishima-shi, Japan. The microbial reduction with this novel NC was evaluated by measuring the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using a tube assay analytic technique. A time-kill assay analysis was conducted to evaluate the kinetic potential against E. faecalis at different time intervals. The novel NC showed a homogenous nanoparticle size under TEM imaging and under UV-Vis established an absorption range of 350–420 nm making it similar to its individual counterparts. The MIC and MIB were measured at 62.5 ± 20 mg/L (p < 0.05) and 250 ± 72 mg/L (p < 0.05), respectively. A time-kill assay analysis for the NC showed 5 h was required to eradicate E. faecalis. Based on the achieved results, it was seen that the novel NC using a combination of silver, zinc oxide and chitosan showed improved antimicrobial action against E. faecalis compared with its individual components under laboratory conditions. A complete eradication of 10(8) log units of E. faecalis at 250 mg/L occurred after a total of 5 h. These preliminary results establish the use of lemon extract-mediated silver, zinc and chitosan-based NC had an antibacterial effectiveness against E. faecalis similar to the individual counterparts used for its production under laboratory conditions. |
---|