Cargando…
Fuzzy Information Discrimination Measures and Their Application to Low Dimensional Embedding Construction in the UMAP Algorithm
Dimensionality reduction techniques are often used by researchers in order to make high dimensional data easier to interpret visually, as data visualization is only possible in low dimensional spaces. Recent research in nonlinear dimensionality reduction introduced many effective algorithms, includi...
Autores principales: | Demidova, Liliya A., Gorchakov, Artyom V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028155/ https://www.ncbi.nlm.nih.gov/pubmed/35448241 http://dx.doi.org/10.3390/jimaging8040113 |
Ejemplares similares
-
BRAQUE: Bayesian Reduction for Amplified Quantization in UMAP Embedding
por: Dall’Olio, Lorenzo, et al.
Publicado: (2023) -
Dimensionality reduction by UMAP to visualize physical and genetic interactions
por: Dorrity, Michael W., et al.
Publicado: (2020) -
Considerably Improving Clustering Algorithms Using UMAP Dimensionality Reduction Technique: A Comparative Study
por: Allaoui, Mebarka, et al.
Publicado: (2020) -
Multi-omics Data Integration Model Based on UMAP Embedding and Convolutional Neural Network
por: ElKarami, Bashier, et al.
Publicado: (2022) -
Application of Aligned-UMAP to longitudinal biomedical studies
por: Dadu, Anant, et al.
Publicado: (2023)