Cargando…
An Explainable Supervised Machine Learning Model for Predicting Respiratory Toxicity of Chemicals Using Optimal Molecular Descriptors
Respiratory toxicity is a serious public health concern caused by the adverse effects of drugs or chemicals, so the pharmaceutical and chemical industries demand reliable and precise computational tools to assess the respiratory toxicity of compounds. The purpose of this study is to develop quantita...
Autores principales: | Jaganathan, Keerthana, Tayara, Hilal, Chong, Kil To |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028223/ https://www.ncbi.nlm.nih.gov/pubmed/35456666 http://dx.doi.org/10.3390/pharmaceutics14040832 |
Ejemplares similares
-
Prediction of Drug-Induced Liver Toxicity Using SVM and Optimal Descriptor Sets
por: Jaganathan, Keerthana, et al.
Publicado: (2021) -
XML-CIMT: Explainable Machine Learning (XML) Model for Predicting Chemical-Induced Mitochondrial Toxicity
por: Jaganathan, Keerthana, et al.
Publicado: (2022) -
Prediction of kinase inhibitors binding modes with machine learning and reduced descriptor sets
por: Abdelbaky, Ibrahim, et al.
Publicado: (2021) -
Deep Probabilistic Learning Model for Prediction of Ionic Liquids Toxicity
por: Chipofya, Mapopa, et al.
Publicado: (2022) -
i4mC-Deep: An Intelligent Predictor of N4-Methylcytosine Sites Using a Deep Learning Approach with Chemical Properties
por: Alam, Waleed, et al.
Publicado: (2021)