Cargando…
Effects of the Water/Cement Ratio on the Properties of 3-3 Type Cement-Based Piezoelectric Composites
In this work, 3-3 type porous lead zirconate titanate (PZT) ceramics were fabricated by incorporating particle-stabilized foams using the gel-casting method. Then, Portland cement pastes with different water/cement ratios (w/c) were cast into the porous ceramics to produce cement-based piezoelectric...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028258/ https://www.ncbi.nlm.nih.gov/pubmed/35454452 http://dx.doi.org/10.3390/ma15082760 |
_version_ | 1784691571517554688 |
---|---|
author | Wang, Jian-hong Sun, Hao-xin Dong, Ying-ge Cheng, Zhi Liu, Wei |
author_facet | Wang, Jian-hong Sun, Hao-xin Dong, Ying-ge Cheng, Zhi Liu, Wei |
author_sort | Wang, Jian-hong |
collection | PubMed |
description | In this work, 3-3 type porous lead zirconate titanate (PZT) ceramics were fabricated by incorporating particle-stabilized foams using the gel-casting method. Then, Portland cement pastes with different water/cement ratios (w/c) were cast into the porous ceramics to produce cement-based piezoelectric (PZT-PC) composites. The effects of w/c on phase structure, microscopic morphology, and electrical properties were studied. The results showed that the amount of hydrated cement products and the density of the PZT–PC composites increased with the increase of w/c from 0.3 to 0.9 and then decreased till w/c achieved a value of 1.1. Correspondingly, the values of both ε(r) and d(33) increased with the density of the PZT–PC composites, resulting in less defects and greater poling efficiency. When w/c was maintained at 0.9, the 3-3 type cement-based piezoelectric composites presented the greatest K(t) value of 40.14% and the lowest Z value of 6.98 MRayls, becoming suitable for applications in civil engineering for structural health monitoring. |
format | Online Article Text |
id | pubmed-9028258 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90282582022-04-23 Effects of the Water/Cement Ratio on the Properties of 3-3 Type Cement-Based Piezoelectric Composites Wang, Jian-hong Sun, Hao-xin Dong, Ying-ge Cheng, Zhi Liu, Wei Materials (Basel) Article In this work, 3-3 type porous lead zirconate titanate (PZT) ceramics were fabricated by incorporating particle-stabilized foams using the gel-casting method. Then, Portland cement pastes with different water/cement ratios (w/c) were cast into the porous ceramics to produce cement-based piezoelectric (PZT-PC) composites. The effects of w/c on phase structure, microscopic morphology, and electrical properties were studied. The results showed that the amount of hydrated cement products and the density of the PZT–PC composites increased with the increase of w/c from 0.3 to 0.9 and then decreased till w/c achieved a value of 1.1. Correspondingly, the values of both ε(r) and d(33) increased with the density of the PZT–PC composites, resulting in less defects and greater poling efficiency. When w/c was maintained at 0.9, the 3-3 type cement-based piezoelectric composites presented the greatest K(t) value of 40.14% and the lowest Z value of 6.98 MRayls, becoming suitable for applications in civil engineering for structural health monitoring. MDPI 2022-04-08 /pmc/articles/PMC9028258/ /pubmed/35454452 http://dx.doi.org/10.3390/ma15082760 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Jian-hong Sun, Hao-xin Dong, Ying-ge Cheng, Zhi Liu, Wei Effects of the Water/Cement Ratio on the Properties of 3-3 Type Cement-Based Piezoelectric Composites |
title | Effects of the Water/Cement Ratio on the Properties of 3-3 Type Cement-Based Piezoelectric Composites |
title_full | Effects of the Water/Cement Ratio on the Properties of 3-3 Type Cement-Based Piezoelectric Composites |
title_fullStr | Effects of the Water/Cement Ratio on the Properties of 3-3 Type Cement-Based Piezoelectric Composites |
title_full_unstemmed | Effects of the Water/Cement Ratio on the Properties of 3-3 Type Cement-Based Piezoelectric Composites |
title_short | Effects of the Water/Cement Ratio on the Properties of 3-3 Type Cement-Based Piezoelectric Composites |
title_sort | effects of the water/cement ratio on the properties of 3-3 type cement-based piezoelectric composites |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028258/ https://www.ncbi.nlm.nih.gov/pubmed/35454452 http://dx.doi.org/10.3390/ma15082760 |
work_keys_str_mv | AT wangjianhong effectsofthewatercementratioonthepropertiesof33typecementbasedpiezoelectriccomposites AT sunhaoxin effectsofthewatercementratioonthepropertiesof33typecementbasedpiezoelectriccomposites AT dongyingge effectsofthewatercementratioonthepropertiesof33typecementbasedpiezoelectriccomposites AT chengzhi effectsofthewatercementratioonthepropertiesof33typecementbasedpiezoelectriccomposites AT liuwei effectsofthewatercementratioonthepropertiesof33typecementbasedpiezoelectriccomposites |