Cargando…

Crystallization Behavior of Isotactic Polybutene Blended with Polyethylene

In this work, the melt crystallization behavior and the solid phase transition of isotactic polybutene (PB) were studied in the polybutene/high-density polyethylene (PB/PE) blends covering the whole composition range. For the dynamic cooling crystallization, PE exhibits almost the same crystallizati...

Descripción completa

Detalles Bibliográficos
Autores principales: Ping, Jiajia, Ma, Guiqiu, Ma, Zhe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028261/
https://www.ncbi.nlm.nih.gov/pubmed/35458646
http://dx.doi.org/10.3390/molecules27082448
Descripción
Sumario:In this work, the melt crystallization behavior and the solid phase transition of isotactic polybutene (PB) were studied in the polybutene/high-density polyethylene (PB/PE) blends covering the whole composition range. For the dynamic cooling crystallization, PE exhibits almost the same crystallization temperature in all blends, whereas PB exhibits a distinct non-monotonic dependence on the composition ratio. Combining the ex situ X-ray diffraction and in situ Fourier transform infrared spectroscope, it was demonstrated that during cooling at 10 °C/min, the presence of at least 70 wt% PE can induce the formation of form I′ directly from the amorphous melt. The detailed relations of polymorphism with temperature were systematically investigated for the PB/PE blends. Different from the formation of the sole tetragonal phase with ≤50 wt% PE, the trigonal form I′ could crystallize directly from amorphous melt with ≥60 wt% PE, which can be further enhanced by elevating the temperature of isothermal crystallization. Interestingly, the critical lowest temperature of obtaining pure form I′ was 85 °C with 70 wt% PE and decreased to 80 °C as the PE fraction was increased to 80 wt%. On the other hand, the spontaneous phase transition from the kinetically favored form II into the thermodynamically stable form I was also explored with X-ray diffraction methods. It was found that at the room temperature, phase transition kinetics can be significantly accelerated by blending at least 70 wt% PE.