Cargando…

Emerging Albumin-Binding Anticancer Drugs for Tumor-Targeted Drug Delivery: Current Understandings and Clinical Translation

Albumin has shown remarkable promise as a natural drug carrier by improving pharmacokinetic (PK) profiles of anticancer drugs for tumor-targeted delivery. The exogenous or endogenous albumin enhances the circulatory half-lives of anticancer drugs and passively target the tumors by the enhanced perme...

Descripción completa

Detalles Bibliográficos
Autores principales: Cho, Hanhee, Jeon, Seong Ik, Ahn, Cheol-Hee, Shim, Man Kyu, Kim, Kwangmeyung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028280/
https://www.ncbi.nlm.nih.gov/pubmed/35456562
http://dx.doi.org/10.3390/pharmaceutics14040728
Descripción
Sumario:Albumin has shown remarkable promise as a natural drug carrier by improving pharmacokinetic (PK) profiles of anticancer drugs for tumor-targeted delivery. The exogenous or endogenous albumin enhances the circulatory half-lives of anticancer drugs and passively target the tumors by the enhanced permeability and retention (EPR) effect. Thus, the albumin-based drug delivery leads to a potent antitumor efficacy in various preclinical models, and several candidates have been evaluated clinically. The most successful example is Abraxane, an exogenous human serum albumin (HSA)-bound paclitaxel formulation approved by the FDA and used to treat locally advanced or metastatic tumors. However, additional clinical translation of exogenous albumin formulations has not been approved to date because of their unexpectedly low delivery efficiency, which can increase the risk of systemic toxicity. To overcome these limitations, several prodrugs binding endogenous albumin covalently have been investigated owing to distinct advantages for a safe and more effective drug delivery. In this review, we give account of the different albumin-based drug delivery systems, from laboratory investigations to clinical applications, and their potential challenges, and the outlook for clinical translation is discussed. In addition, recent advances and progress of albumin-binding drugs to move more closely to the clinical settings are outlined.