Cargando…
Surface Interactions between Ketoprofen and Silica-Based Biomaterials as Drug Delivery System Synthesized via Sol–Gel: A Molecular Dynamics Study
Biomaterial-based drug delivery systems for a controlled drug release are drawing increasing attention thanks to their possible pharmaceutical and biomedical applications. It is important to control the local administration of drugs, especially when the drug exhibits problems diffusing across biolog...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028380/ https://www.ncbi.nlm.nih.gov/pubmed/35454451 http://dx.doi.org/10.3390/ma15082759 |
_version_ | 1784691602853199872 |
---|---|
author | Raffaini, Giuseppina Catauro, Michelina |
author_facet | Raffaini, Giuseppina Catauro, Michelina |
author_sort | Raffaini, Giuseppina |
collection | PubMed |
description | Biomaterial-based drug delivery systems for a controlled drug release are drawing increasing attention thanks to their possible pharmaceutical and biomedical applications. It is important to control the local administration of drugs, especially when the drug exhibits problems diffusing across biological barriers. Thus, in an appropriate concentration, it would be released in situ, reducing side effects due to interactions with the biological environment after implantation. A theoretical study based on Molecular Mechanics and Molecular Dynamics methods is performed to investigate possible surface interactions between the amorphous SiO(2) surface and the ketoprofen molecules, an anti-inflammatory drug, considering the role of drug concentration. These theoretical results are compared with experimental data obtained by analyzing, through Fourier transform infrared spectroscopy (FT-IR), the interaction between the SiO(2) amorphous surface and two percentages of the ketoprofen drug entrapped in a silica matrix obtained via the sol–gel method and dried materials. The loaded drug in these amorphous bioactive material forms hydrogen bonds with the silica surface, as found in this theoretical study. The surface interactions are essential to have a new generation of biomaterials not only important for biocompatibility, with specific structural and functional properties, but also able to incorporate anti-inflammatory agents for release into the human body. |
format | Online Article Text |
id | pubmed-9028380 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90283802022-04-23 Surface Interactions between Ketoprofen and Silica-Based Biomaterials as Drug Delivery System Synthesized via Sol–Gel: A Molecular Dynamics Study Raffaini, Giuseppina Catauro, Michelina Materials (Basel) Article Biomaterial-based drug delivery systems for a controlled drug release are drawing increasing attention thanks to their possible pharmaceutical and biomedical applications. It is important to control the local administration of drugs, especially when the drug exhibits problems diffusing across biological barriers. Thus, in an appropriate concentration, it would be released in situ, reducing side effects due to interactions with the biological environment after implantation. A theoretical study based on Molecular Mechanics and Molecular Dynamics methods is performed to investigate possible surface interactions between the amorphous SiO(2) surface and the ketoprofen molecules, an anti-inflammatory drug, considering the role of drug concentration. These theoretical results are compared with experimental data obtained by analyzing, through Fourier transform infrared spectroscopy (FT-IR), the interaction between the SiO(2) amorphous surface and two percentages of the ketoprofen drug entrapped in a silica matrix obtained via the sol–gel method and dried materials. The loaded drug in these amorphous bioactive material forms hydrogen bonds with the silica surface, as found in this theoretical study. The surface interactions are essential to have a new generation of biomaterials not only important for biocompatibility, with specific structural and functional properties, but also able to incorporate anti-inflammatory agents for release into the human body. MDPI 2022-04-08 /pmc/articles/PMC9028380/ /pubmed/35454451 http://dx.doi.org/10.3390/ma15082759 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Raffaini, Giuseppina Catauro, Michelina Surface Interactions between Ketoprofen and Silica-Based Biomaterials as Drug Delivery System Synthesized via Sol–Gel: A Molecular Dynamics Study |
title | Surface Interactions between Ketoprofen and Silica-Based Biomaterials as Drug Delivery System Synthesized via Sol–Gel: A Molecular Dynamics Study |
title_full | Surface Interactions between Ketoprofen and Silica-Based Biomaterials as Drug Delivery System Synthesized via Sol–Gel: A Molecular Dynamics Study |
title_fullStr | Surface Interactions between Ketoprofen and Silica-Based Biomaterials as Drug Delivery System Synthesized via Sol–Gel: A Molecular Dynamics Study |
title_full_unstemmed | Surface Interactions between Ketoprofen and Silica-Based Biomaterials as Drug Delivery System Synthesized via Sol–Gel: A Molecular Dynamics Study |
title_short | Surface Interactions between Ketoprofen and Silica-Based Biomaterials as Drug Delivery System Synthesized via Sol–Gel: A Molecular Dynamics Study |
title_sort | surface interactions between ketoprofen and silica-based biomaterials as drug delivery system synthesized via sol–gel: a molecular dynamics study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028380/ https://www.ncbi.nlm.nih.gov/pubmed/35454451 http://dx.doi.org/10.3390/ma15082759 |
work_keys_str_mv | AT raffainigiuseppina surfaceinteractionsbetweenketoprofenandsilicabasedbiomaterialsasdrugdeliverysystemsynthesizedviasolgelamoleculardynamicsstudy AT catauromichelina surfaceinteractionsbetweenketoprofenandsilicabasedbiomaterialsasdrugdeliverysystemsynthesizedviasolgelamoleculardynamicsstudy |