Cargando…
Rethinking the Role of Normalization and Residual Blocks for Spiking Neural Networks
Biologically inspired spiking neural networks (SNNs) are widely used to realize ultralow-power energy consumption. However, deep SNNs are not easy to train due to the excessive firing of spiking neurons in the hidden layers. To tackle this problem, we propose a novel but simple normalization techniq...
Autores principales: | Ikegawa, Shin-ichi, Saiin, Ryuji, Sawada, Yoshihide, Natori, Naotake |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028401/ https://www.ncbi.nlm.nih.gov/pubmed/35458860 http://dx.doi.org/10.3390/s22082876 |
Ejemplares similares
-
Rethinking arithmetic for deep neural networks
por: Constantinides, G. A.
Publicado: (2020) -
Going Deeper in Spiking Neural Networks: VGG and Residual Architectures
por: Sengupta, Abhronil, et al.
Publicado: (2019) -
Rethinking Weight Decay for Efficient Neural Network Pruning
por: Tessier, Hugo, et al.
Publicado: (2022) -
Rethinking schizophrenia in the context of normal neurodevelopment
por: Catts, Vibeke S., et al.
Publicado: (2013) -
Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks
por: de Santos-Sierra, Daniel, et al.
Publicado: (2015)