Cargando…

A Rotational Invariant Neural Network for Electrical Impedance Tomography Imaging without Reference Voltage: RF-REIM-NET

Background: Electrical Impedance Tomography (EIT) is a radiation-free technique for image reconstruction. However, as the inverse problem of EIT is non-linear and ill-posed, the reconstruction of sharp conductivity images poses a major problem. With the emergence of artificial neural networks (ANN),...

Descripción completa

Detalles Bibliográficos
Autores principales: Rixen, Jöran, Eliasson, Benedikt, Hentze, Benjamin, Muders, Thomas, Putensen, Christian, Leonhardt, Steffen, Ngo, Chuong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028444/
https://www.ncbi.nlm.nih.gov/pubmed/35453825
http://dx.doi.org/10.3390/diagnostics12040777
_version_ 1784691619239297024
author Rixen, Jöran
Eliasson, Benedikt
Hentze, Benjamin
Muders, Thomas
Putensen, Christian
Leonhardt, Steffen
Ngo, Chuong
author_facet Rixen, Jöran
Eliasson, Benedikt
Hentze, Benjamin
Muders, Thomas
Putensen, Christian
Leonhardt, Steffen
Ngo, Chuong
author_sort Rixen, Jöran
collection PubMed
description Background: Electrical Impedance Tomography (EIT) is a radiation-free technique for image reconstruction. However, as the inverse problem of EIT is non-linear and ill-posed, the reconstruction of sharp conductivity images poses a major problem. With the emergence of artificial neural networks (ANN), their application in EIT has recently gained interest. Methodology: We propose an ANN that can solve the inverse problem without the presence of a reference voltage. At the end of the ANN, we reused the dense layers multiple times, considering that the EIT exhibits rotational symmetries in a circular domain. To avoid bias in training data, the conductivity range used in the simulations was greater than expected in measurements. We also propose a new method that creates new data samples from existing training data. Results: We show that our ANN is more robust with respect to noise compared with the analytical Gauss–Newton approach. The reconstruction results for EIT phantom tank measurements are also clearer, as ringing artefacts are less pronounced. To evaluate the performance of the ANN under real-world conditions, we perform reconstructions on an experimental pig study with computed tomography for comparison. Conclusions: Our proposed ANN can reconstruct EIT images without the need of a reference voltage.
format Online
Article
Text
id pubmed-9028444
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-90284442022-04-23 A Rotational Invariant Neural Network for Electrical Impedance Tomography Imaging without Reference Voltage: RF-REIM-NET Rixen, Jöran Eliasson, Benedikt Hentze, Benjamin Muders, Thomas Putensen, Christian Leonhardt, Steffen Ngo, Chuong Diagnostics (Basel) Article Background: Electrical Impedance Tomography (EIT) is a radiation-free technique for image reconstruction. However, as the inverse problem of EIT is non-linear and ill-posed, the reconstruction of sharp conductivity images poses a major problem. With the emergence of artificial neural networks (ANN), their application in EIT has recently gained interest. Methodology: We propose an ANN that can solve the inverse problem without the presence of a reference voltage. At the end of the ANN, we reused the dense layers multiple times, considering that the EIT exhibits rotational symmetries in a circular domain. To avoid bias in training data, the conductivity range used in the simulations was greater than expected in measurements. We also propose a new method that creates new data samples from existing training data. Results: We show that our ANN is more robust with respect to noise compared with the analytical Gauss–Newton approach. The reconstruction results for EIT phantom tank measurements are also clearer, as ringing artefacts are less pronounced. To evaluate the performance of the ANN under real-world conditions, we perform reconstructions on an experimental pig study with computed tomography for comparison. Conclusions: Our proposed ANN can reconstruct EIT images without the need of a reference voltage. MDPI 2022-03-22 /pmc/articles/PMC9028444/ /pubmed/35453825 http://dx.doi.org/10.3390/diagnostics12040777 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Rixen, Jöran
Eliasson, Benedikt
Hentze, Benjamin
Muders, Thomas
Putensen, Christian
Leonhardt, Steffen
Ngo, Chuong
A Rotational Invariant Neural Network for Electrical Impedance Tomography Imaging without Reference Voltage: RF-REIM-NET
title A Rotational Invariant Neural Network for Electrical Impedance Tomography Imaging without Reference Voltage: RF-REIM-NET
title_full A Rotational Invariant Neural Network for Electrical Impedance Tomography Imaging without Reference Voltage: RF-REIM-NET
title_fullStr A Rotational Invariant Neural Network for Electrical Impedance Tomography Imaging without Reference Voltage: RF-REIM-NET
title_full_unstemmed A Rotational Invariant Neural Network for Electrical Impedance Tomography Imaging without Reference Voltage: RF-REIM-NET
title_short A Rotational Invariant Neural Network for Electrical Impedance Tomography Imaging without Reference Voltage: RF-REIM-NET
title_sort rotational invariant neural network for electrical impedance tomography imaging without reference voltage: rf-reim-net
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028444/
https://www.ncbi.nlm.nih.gov/pubmed/35453825
http://dx.doi.org/10.3390/diagnostics12040777
work_keys_str_mv AT rixenjoran arotationalinvariantneuralnetworkforelectricalimpedancetomographyimagingwithoutreferencevoltagerfreimnet
AT eliassonbenedikt arotationalinvariantneuralnetworkforelectricalimpedancetomographyimagingwithoutreferencevoltagerfreimnet
AT hentzebenjamin arotationalinvariantneuralnetworkforelectricalimpedancetomographyimagingwithoutreferencevoltagerfreimnet
AT mudersthomas arotationalinvariantneuralnetworkforelectricalimpedancetomographyimagingwithoutreferencevoltagerfreimnet
AT putensenchristian arotationalinvariantneuralnetworkforelectricalimpedancetomographyimagingwithoutreferencevoltagerfreimnet
AT leonhardtsteffen arotationalinvariantneuralnetworkforelectricalimpedancetomographyimagingwithoutreferencevoltagerfreimnet
AT ngochuong arotationalinvariantneuralnetworkforelectricalimpedancetomographyimagingwithoutreferencevoltagerfreimnet
AT rixenjoran rotationalinvariantneuralnetworkforelectricalimpedancetomographyimagingwithoutreferencevoltagerfreimnet
AT eliassonbenedikt rotationalinvariantneuralnetworkforelectricalimpedancetomographyimagingwithoutreferencevoltagerfreimnet
AT hentzebenjamin rotationalinvariantneuralnetworkforelectricalimpedancetomographyimagingwithoutreferencevoltagerfreimnet
AT mudersthomas rotationalinvariantneuralnetworkforelectricalimpedancetomographyimagingwithoutreferencevoltagerfreimnet
AT putensenchristian rotationalinvariantneuralnetworkforelectricalimpedancetomographyimagingwithoutreferencevoltagerfreimnet
AT leonhardtsteffen rotationalinvariantneuralnetworkforelectricalimpedancetomographyimagingwithoutreferencevoltagerfreimnet
AT ngochuong rotationalinvariantneuralnetworkforelectricalimpedancetomographyimagingwithoutreferencevoltagerfreimnet