Cargando…
ELECTRIcity: An Efficient Transformer for Non-Intrusive Load Monitoring
Non-Intrusive Load Monitoring (NILM) describes the process of inferring the consumption pattern of appliances by only having access to the aggregated household signal. Sequence-to-sequence deep learning models have been firmly established as state-of-the-art approaches for NILM, in an attempt to ide...
Autores principales: | Sykiotis, Stavros, Kaselimi, Maria, Doulamis, Anastasios, Doulamis, Nikolaos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028578/ https://www.ncbi.nlm.nih.gov/pubmed/35458907 http://dx.doi.org/10.3390/s22082926 |
Ejemplares similares
-
Towards Trustworthy Energy Disaggregation: A Review of Challenges, Methods, and Perspectives for Non-Intrusive Load Monitoring
por: Kaselimi, Maria, et al.
Publicado: (2022) -
A review of non-invasive sensors and artificial intelligence models for diabetic foot monitoring
por: Kaselimi, Maria, et al.
Publicado: (2022) -
COVID-19 Spatio-Temporal Evolution Using Deep Learning at a European Level
por: Kavouras, Ioannis, et al.
Publicado: (2022) -
Tensor-Based Learning for Detecting Abnormalities on Digital Mammograms
por: Tzortzis, Ioannis N., et al.
Publicado: (2022) -
Gaussian Process Regression Tuned by Bayesian Optimization for Seawater Intrusion Prediction
por: Kopsiaftis, George, et al.
Publicado: (2019)