Cargando…
Identifying Predictors of COVID-19 Mortality Using Machine Learning
(1) Background: Coronavirus disease 2019 (COVID-19) is a dominant, rapidly spreading respiratory disease. However, the factors influencing COVID-19 mortality still have not been confirmed. The pathogenesis of COVID-19 is unknown, and relevant mortality predictors are lacking. This study aimed to inv...
Autores principales: | Wan, Tsz-Kin, Huang, Rui-Xuan, Tulu, Thomas Wetere, Liu, Jun-Dong, Vodencarevic, Asmir, Wong, Chi-Wah, Chan, Kei-Hang Katie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028639/ https://www.ncbi.nlm.nih.gov/pubmed/35455038 http://dx.doi.org/10.3390/life12040547 |
Ejemplares similares
-
Machine learning-based prediction of COVID-19 mortality using immunological and metabolic biomarkers
por: Tulu, Thomas Wetere, et al.
Publicado: (2023) -
Advanced machine learning for predicting individual risk of flares in rheumatoid arthritis patients tapering biologic drugs
por: Vodencarevic, Asmir, et al.
Publicado: (2021) -
Lung adenocarcinoma-related target gene prediction and drug repositioning
por: Huang, Rui Xuan, et al.
Publicado: (2022) -
A Mendelian randomization-based exploration of red blood cell distribution width and mean corpuscular volume with risk of hemorrhagic strokes
por: Liu, Jundong, et al.
Publicado: (2022) -
Identifying Predictors of Psychological Distress During COVID-19: A Machine Learning Approach
por: Prout, Tracy A., et al.
Publicado: (2020)