Cargando…
Nanopower Integrated Gaussian Mixture Model Classifier for Epileptic Seizure Prediction
This paper presents a new analog front-end classification system that serves as a wake-up engine for digital back-ends, targeting embedded devices for epileptic seizure prediction. Predicting epileptic seizures is of major importance for the patient’s quality of life as they can lead to paralyzation...
Autores principales: | Alimisis, Vassilis, Gennis, Georgios, Touloupas, Konstantinos, Dimas, Christos, Uzunoglu, Nikolaos, Sotiriadis, Paul P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028754/ https://www.ncbi.nlm.nih.gov/pubmed/35447720 http://dx.doi.org/10.3390/bioengineering9040160 |
Ejemplares similares
-
A Low-Power Analog Integrated Implementation of the Support Vector Machine Algorithm with On-Chip Learning Tested on a Bearing Fault Application
por: Alimisis, Vassilis, et al.
Publicado: (2023) -
A Point-Matching Method of Moment with Sparse Bayesian Learning Applied and Evaluated in Dynamic Lung Electrical Impedance Tomography
por: Dimas, Christos, et al.
Publicado: (2021) -
Analog IC design techniques for nanopower biomedical signal processing
por: Sawigun, Chutham, et al.
Publicado: (2016) -
Topolnogical classifier for detecting the emergence of epileptic seizures
por: Piangerelli, Marco, et al.
Publicado: (2018) -
Ensemble Classifier for Epileptic Seizure Detection for Imperfect EEG Data
por: Abualsaud, Khalid, et al.
Publicado: (2015)