Cargando…
An Affordable Streamflow Measurement Technique Based on Delay and Sum Beamforming
At the local scale, environmental parameters often require monitoring by means of affordable measuring techniques and technologies given they need to be frequently surveyed. Streamflow in riverbeds or in channels is a hydrological variable that needs to be monitored in order to keep the runoff regim...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028789/ https://www.ncbi.nlm.nih.gov/pubmed/35458830 http://dx.doi.org/10.3390/s22082843 |
Sumario: | At the local scale, environmental parameters often require monitoring by means of affordable measuring techniques and technologies given they need to be frequently surveyed. Streamflow in riverbeds or in channels is a hydrological variable that needs to be monitored in order to keep the runoff regimes under control and somehow forecast floods, allowing prevention of damage for people and infrastructure. Moreover, measuring such a variable is always extremely important for the knowledge of the environmental status of connected aquatic ecosystems. This paper presents a new approach to assessing hydrodynamic features related to a given channel by means of a beamforming technique that was applied to video sensing. Different features have been estimated, namely the flow velocity, the temperature, and the riverbed movements. The applied beamforming technique works on a modified sum and delay method, also using the Multiple Signal Classification algorithm (MUSIC), by acting as Synthetic Aperture Radar (SAR) post-processing. The results are very interesting, especially compared to the on-site measured data and encourage the use of affordable video sensors located along the channel or river course for monitoring purposes. The paper also illustrates the use of beamforming measurements to be calibrated by means of conventional techniques with more accurate data. Certainly, the results can be improved; however, they indicate some margins of improvements and updates. As metrics of assessment, a histogram of greyscale/pixels was adopted, taking into account the example of layers and curve plots. They show changes according to the locations where the supporting videos were obtained. |
---|