Cargando…
Influence of Different Parameters on the Performance of Alkali-Activated Slag/Fly Ash Composite System
In order to study the influence law of each parameter on the performance of the alkali-activated composite gelling system, the influence degree was sorted, and the most important parameter affecting each performance was found. The solution of liquid water glass and solid sodium hydroxide was used as...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028861/ https://www.ncbi.nlm.nih.gov/pubmed/35454407 http://dx.doi.org/10.3390/ma15082714 |
Sumario: | In order to study the influence law of each parameter on the performance of the alkali-activated composite gelling system, the influence degree was sorted, and the most important parameter affecting each performance was found. The solution of liquid water glass and solid sodium hydroxide was used as the alkaline activator, and the mixing ratio was designed by the orthogonal test method. The effects of four parameters of fly ash content, water glass modulus, water glass solid content, and water–solid ratio on the working performance and mechanical properties of alkali-activated slag–fly ash composite cementation system were discussed. The gelling system was studied by microscopic experiments such as SEM and FTIR. The results show that the solid content of water glass has the greatest influence on the fluidity of the composite cementitious system, and the content of fly ash is the primary factor affecting the setting time of the material. The flexural and compressive strengths at the age of 7 d and 28 d were most affected by the content of fly ash, and the solid content of water glass had the greatest influence on the flexural and compressive strengths at the age of 2 d. From the perspective of microscopic morphology, in the high-strength samples, the fly ash particles and the remaining outer shell are embedded in the gel to form a dense whole. When the amount of silica in the composite gelling system is too high, it will cause the phenomenon of low macroscopic mechanical properties. |
---|