Cargando…
Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implants: Comparison of Different Coating Materials Using Test Methodologies for Life-Time Estimation
Liquid crystal polymer (LCP) has gained wide interest in the electronics industry largely due to its flexibility, stable insulation and dielectric properties and chip integration capabilities. Recently, LCP has also been investigated as a biocompatible substrate for the fabrication of multielectrode...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028940/ https://www.ncbi.nlm.nih.gov/pubmed/35457851 http://dx.doi.org/10.3390/mi13040544 |
_version_ | 1784691752146305024 |
---|---|
author | Pak, Anna Nanbakhsh, Kambiz Hölck, Ole Ritasalo, Riina Sousa, Maria Van Gompel, Matthias Pahl, Barbara Wilson, Joshua Kallmayer, Christine Giagka, Vasiliki |
author_facet | Pak, Anna Nanbakhsh, Kambiz Hölck, Ole Ritasalo, Riina Sousa, Maria Van Gompel, Matthias Pahl, Barbara Wilson, Joshua Kallmayer, Christine Giagka, Vasiliki |
author_sort | Pak, Anna |
collection | PubMed |
description | Liquid crystal polymer (LCP) has gained wide interest in the electronics industry largely due to its flexibility, stable insulation and dielectric properties and chip integration capabilities. Recently, LCP has also been investigated as a biocompatible substrate for the fabrication of multielectrode arrays. Realizing a fully implantable LCP-based bioelectronic device, however, still necessitates a low form factor packaging solution to protect the electronics in the body. In this work, we investigate two promising encapsulation coatings based on thin-film technology as the main packaging for LCP-based electronics. Specifically, a HfO(2)–based nanolaminate ceramic (TFE1) deposited via atomic layer deposition (ALD), and a hybrid Parylene C-ALD multilayer stack (TFE2), both with a silicone finish, were investigated and compared to a reference LCP coating. T-peel, water-vapour transmission rate (WVTR) and long-term electrochemical impedance spectrometry (EIS) tests were performed to evaluate adhesion, barrier properties and overall encapsulation performance of the coatings. Both TFE materials showed stable impedance characteristics while submerged in 60 °C saline, with TFE1-silicone lasting more than 16 months under a continuous 14V DC bias (experiment is ongoing). The results presented in this work show that WVTR is not the main factor in determining lifetime, but the adhesion of the coating to the substrate materials plays a key role in maintaining a stable interface and thus longer lifetimes. |
format | Online Article Text |
id | pubmed-9028940 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90289402022-04-23 Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implants: Comparison of Different Coating Materials Using Test Methodologies for Life-Time Estimation Pak, Anna Nanbakhsh, Kambiz Hölck, Ole Ritasalo, Riina Sousa, Maria Van Gompel, Matthias Pahl, Barbara Wilson, Joshua Kallmayer, Christine Giagka, Vasiliki Micromachines (Basel) Article Liquid crystal polymer (LCP) has gained wide interest in the electronics industry largely due to its flexibility, stable insulation and dielectric properties and chip integration capabilities. Recently, LCP has also been investigated as a biocompatible substrate for the fabrication of multielectrode arrays. Realizing a fully implantable LCP-based bioelectronic device, however, still necessitates a low form factor packaging solution to protect the electronics in the body. In this work, we investigate two promising encapsulation coatings based on thin-film technology as the main packaging for LCP-based electronics. Specifically, a HfO(2)–based nanolaminate ceramic (TFE1) deposited via atomic layer deposition (ALD), and a hybrid Parylene C-ALD multilayer stack (TFE2), both with a silicone finish, were investigated and compared to a reference LCP coating. T-peel, water-vapour transmission rate (WVTR) and long-term electrochemical impedance spectrometry (EIS) tests were performed to evaluate adhesion, barrier properties and overall encapsulation performance of the coatings. Both TFE materials showed stable impedance characteristics while submerged in 60 °C saline, with TFE1-silicone lasting more than 16 months under a continuous 14V DC bias (experiment is ongoing). The results presented in this work show that WVTR is not the main factor in determining lifetime, but the adhesion of the coating to the substrate materials plays a key role in maintaining a stable interface and thus longer lifetimes. MDPI 2022-03-30 /pmc/articles/PMC9028940/ /pubmed/35457851 http://dx.doi.org/10.3390/mi13040544 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pak, Anna Nanbakhsh, Kambiz Hölck, Ole Ritasalo, Riina Sousa, Maria Van Gompel, Matthias Pahl, Barbara Wilson, Joshua Kallmayer, Christine Giagka, Vasiliki Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implants: Comparison of Different Coating Materials Using Test Methodologies for Life-Time Estimation |
title | Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implants: Comparison of Different Coating Materials Using Test Methodologies for Life-Time Estimation |
title_full | Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implants: Comparison of Different Coating Materials Using Test Methodologies for Life-Time Estimation |
title_fullStr | Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implants: Comparison of Different Coating Materials Using Test Methodologies for Life-Time Estimation |
title_full_unstemmed | Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implants: Comparison of Different Coating Materials Using Test Methodologies for Life-Time Estimation |
title_short | Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implants: Comparison of Different Coating Materials Using Test Methodologies for Life-Time Estimation |
title_sort | thin film encapsulation for lcp-based flexible bioelectronic implants: comparison of different coating materials using test methodologies for life-time estimation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028940/ https://www.ncbi.nlm.nih.gov/pubmed/35457851 http://dx.doi.org/10.3390/mi13040544 |
work_keys_str_mv | AT pakanna thinfilmencapsulationforlcpbasedflexiblebioelectronicimplantscomparisonofdifferentcoatingmaterialsusingtestmethodologiesforlifetimeestimation AT nanbakhshkambiz thinfilmencapsulationforlcpbasedflexiblebioelectronicimplantscomparisonofdifferentcoatingmaterialsusingtestmethodologiesforlifetimeestimation AT holckole thinfilmencapsulationforlcpbasedflexiblebioelectronicimplantscomparisonofdifferentcoatingmaterialsusingtestmethodologiesforlifetimeestimation AT ritasaloriina thinfilmencapsulationforlcpbasedflexiblebioelectronicimplantscomparisonofdifferentcoatingmaterialsusingtestmethodologiesforlifetimeestimation AT sousamaria thinfilmencapsulationforlcpbasedflexiblebioelectronicimplantscomparisonofdifferentcoatingmaterialsusingtestmethodologiesforlifetimeestimation AT vangompelmatthias thinfilmencapsulationforlcpbasedflexiblebioelectronicimplantscomparisonofdifferentcoatingmaterialsusingtestmethodologiesforlifetimeestimation AT pahlbarbara thinfilmencapsulationforlcpbasedflexiblebioelectronicimplantscomparisonofdifferentcoatingmaterialsusingtestmethodologiesforlifetimeestimation AT wilsonjoshua thinfilmencapsulationforlcpbasedflexiblebioelectronicimplantscomparisonofdifferentcoatingmaterialsusingtestmethodologiesforlifetimeestimation AT kallmayerchristine thinfilmencapsulationforlcpbasedflexiblebioelectronicimplantscomparisonofdifferentcoatingmaterialsusingtestmethodologiesforlifetimeestimation AT giagkavasiliki thinfilmencapsulationforlcpbasedflexiblebioelectronicimplantscomparisonofdifferentcoatingmaterialsusingtestmethodologiesforlifetimeestimation |