Cargando…
Deep Hierarchical Ensemble Model for Suicide Detection on Imbalanced Social Media Data
As a serious worldwide problem, suicide often causes huge and irreversible losses to families and society. Therefore, it is necessary to detect and help individuals with suicidal ideation in time. In recent years, the prosperous development of social media has provided new perspectives on suicide de...
Autores principales: | Li, Zepeng, Zhou, Jiawei, An, Zhengyi, Cheng, Wenchuan, Hu, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9029105/ https://www.ncbi.nlm.nih.gov/pubmed/35455105 http://dx.doi.org/10.3390/e24040442 |
Ejemplares similares
-
MHA: a multimodal hierarchical attention model for depression detection in social media
por: Li, Zepeng, et al.
Publicado: (2023) -
A novel imbalanced data classification approach for suicidal ideation detection on social media
por: Ben Hassine, Mohamed Ali, et al.
Publicado: (2021) -
Detecting Suicidal Ideation in Social Media: An Ensemble Method Based on Feature Fusion
por: Liu, Jingfang, et al.
Publicado: (2022) -
Improved PSO_AdaBoost Ensemble Algorithm for Imbalanced Data
por: Li, Kewen, et al.
Publicado: (2019) -
Ensemble of Rotation Trees for Imbalanced Medical Datasets
por: Guo, Huaping, et al.
Publicado: (2018)