Cargando…
Significant Therapeutic Effects of Adult Human Neural Stem Cells for Spinal Cord Injury Are Mediated by Monocyte Chemoattractant Protein-1 (MCP-1)
The limited capability of regeneration in the human central nervous system leads to severe and permanent disabilities following spinal cord injury (SCI) while patients suffer from no viable treatment option. Adult human neural stem cells (ahNSCs) are unique cells derived from the adult human brain,...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9029183/ https://www.ncbi.nlm.nih.gov/pubmed/35457084 http://dx.doi.org/10.3390/ijms23084267 |
_version_ | 1784691813231099904 |
---|---|
author | Kim, Chung Kwon Won, Jeong-Seob An, Jae Yeol Lee, Ho Jin Nam, Ah-Jin Nam, Hyun Lee, Ji Yeoun Lee, Kyung-Hoon Lee, Sun-Ho Joo, Kyeung Min |
author_facet | Kim, Chung Kwon Won, Jeong-Seob An, Jae Yeol Lee, Ho Jin Nam, Ah-Jin Nam, Hyun Lee, Ji Yeoun Lee, Kyung-Hoon Lee, Sun-Ho Joo, Kyeung Min |
author_sort | Kim, Chung Kwon |
collection | PubMed |
description | The limited capability of regeneration in the human central nervous system leads to severe and permanent disabilities following spinal cord injury (SCI) while patients suffer from no viable treatment option. Adult human neural stem cells (ahNSCs) are unique cells derived from the adult human brain, which have the essential characteristics of NSCs. The objective of this study was to characterize the therapeutic effects of ahNSCs isolated from the temporal lobes of focal cortical dysplasia type IIIa for SCI and to elucidate their treatment mechanisms. Results showed that the recovery of motor functions was significantly improved in groups transplanted with ahNSCs, where, in damaged regions of spinal cords, the numbers of both spread and regenerated nerve fibers were observed to be higher than the vehicle group. In addition, the distance between neuronal nuclei in damaged spinal cord tissue was significantly closer in treatment groups than the vehicle group. Based on an immunohistochemistry analysis, those neuroprotective effects of ahNSCs in SCI were found to be mediated by inhibiting apoptosis of spinal cord neurons. Moreover, the analysis of the conditioned medium (CM) of ahNSCs revealed that such neuroprotective effects were mediated by paracrine effects with various types of cytokines released from ahNSCs, where monocyte chemoattractant protein-1 (MCP-1, also known as CCL2) was identified as a key paracrine mediator. These results of ahNSCs could be utilized further in the preclinical and clinical development of effective and safe cell therapeutics for SCI, with no available therapeutic options at present. |
format | Online Article Text |
id | pubmed-9029183 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90291832022-04-23 Significant Therapeutic Effects of Adult Human Neural Stem Cells for Spinal Cord Injury Are Mediated by Monocyte Chemoattractant Protein-1 (MCP-1) Kim, Chung Kwon Won, Jeong-Seob An, Jae Yeol Lee, Ho Jin Nam, Ah-Jin Nam, Hyun Lee, Ji Yeoun Lee, Kyung-Hoon Lee, Sun-Ho Joo, Kyeung Min Int J Mol Sci Article The limited capability of regeneration in the human central nervous system leads to severe and permanent disabilities following spinal cord injury (SCI) while patients suffer from no viable treatment option. Adult human neural stem cells (ahNSCs) are unique cells derived from the adult human brain, which have the essential characteristics of NSCs. The objective of this study was to characterize the therapeutic effects of ahNSCs isolated from the temporal lobes of focal cortical dysplasia type IIIa for SCI and to elucidate their treatment mechanisms. Results showed that the recovery of motor functions was significantly improved in groups transplanted with ahNSCs, where, in damaged regions of spinal cords, the numbers of both spread and regenerated nerve fibers were observed to be higher than the vehicle group. In addition, the distance between neuronal nuclei in damaged spinal cord tissue was significantly closer in treatment groups than the vehicle group. Based on an immunohistochemistry analysis, those neuroprotective effects of ahNSCs in SCI were found to be mediated by inhibiting apoptosis of spinal cord neurons. Moreover, the analysis of the conditioned medium (CM) of ahNSCs revealed that such neuroprotective effects were mediated by paracrine effects with various types of cytokines released from ahNSCs, where monocyte chemoattractant protein-1 (MCP-1, also known as CCL2) was identified as a key paracrine mediator. These results of ahNSCs could be utilized further in the preclinical and clinical development of effective and safe cell therapeutics for SCI, with no available therapeutic options at present. MDPI 2022-04-12 /pmc/articles/PMC9029183/ /pubmed/35457084 http://dx.doi.org/10.3390/ijms23084267 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kim, Chung Kwon Won, Jeong-Seob An, Jae Yeol Lee, Ho Jin Nam, Ah-Jin Nam, Hyun Lee, Ji Yeoun Lee, Kyung-Hoon Lee, Sun-Ho Joo, Kyeung Min Significant Therapeutic Effects of Adult Human Neural Stem Cells for Spinal Cord Injury Are Mediated by Monocyte Chemoattractant Protein-1 (MCP-1) |
title | Significant Therapeutic Effects of Adult Human Neural Stem Cells for Spinal Cord Injury Are Mediated by Monocyte Chemoattractant Protein-1 (MCP-1) |
title_full | Significant Therapeutic Effects of Adult Human Neural Stem Cells for Spinal Cord Injury Are Mediated by Monocyte Chemoattractant Protein-1 (MCP-1) |
title_fullStr | Significant Therapeutic Effects of Adult Human Neural Stem Cells for Spinal Cord Injury Are Mediated by Monocyte Chemoattractant Protein-1 (MCP-1) |
title_full_unstemmed | Significant Therapeutic Effects of Adult Human Neural Stem Cells for Spinal Cord Injury Are Mediated by Monocyte Chemoattractant Protein-1 (MCP-1) |
title_short | Significant Therapeutic Effects of Adult Human Neural Stem Cells for Spinal Cord Injury Are Mediated by Monocyte Chemoattractant Protein-1 (MCP-1) |
title_sort | significant therapeutic effects of adult human neural stem cells for spinal cord injury are mediated by monocyte chemoattractant protein-1 (mcp-1) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9029183/ https://www.ncbi.nlm.nih.gov/pubmed/35457084 http://dx.doi.org/10.3390/ijms23084267 |
work_keys_str_mv | AT kimchungkwon significanttherapeuticeffectsofadulthumanneuralstemcellsforspinalcordinjuryaremediatedbymonocytechemoattractantprotein1mcp1 AT wonjeongseob significanttherapeuticeffectsofadulthumanneuralstemcellsforspinalcordinjuryaremediatedbymonocytechemoattractantprotein1mcp1 AT anjaeyeol significanttherapeuticeffectsofadulthumanneuralstemcellsforspinalcordinjuryaremediatedbymonocytechemoattractantprotein1mcp1 AT leehojin significanttherapeuticeffectsofadulthumanneuralstemcellsforspinalcordinjuryaremediatedbymonocytechemoattractantprotein1mcp1 AT namahjin significanttherapeuticeffectsofadulthumanneuralstemcellsforspinalcordinjuryaremediatedbymonocytechemoattractantprotein1mcp1 AT namhyun significanttherapeuticeffectsofadulthumanneuralstemcellsforspinalcordinjuryaremediatedbymonocytechemoattractantprotein1mcp1 AT leejiyeoun significanttherapeuticeffectsofadulthumanneuralstemcellsforspinalcordinjuryaremediatedbymonocytechemoattractantprotein1mcp1 AT leekyunghoon significanttherapeuticeffectsofadulthumanneuralstemcellsforspinalcordinjuryaremediatedbymonocytechemoattractantprotein1mcp1 AT leesunho significanttherapeuticeffectsofadulthumanneuralstemcellsforspinalcordinjuryaremediatedbymonocytechemoattractantprotein1mcp1 AT jookyeungmin significanttherapeuticeffectsofadulthumanneuralstemcellsforspinalcordinjuryaremediatedbymonocytechemoattractantprotein1mcp1 |