Cargando…

Direct Electron Transfer from Upconversion Graphene Quantum Dots to TiO(2) Enabling Infrared Light-Driven Overall Water Splitting

Utilization of infrared light in photocatalytic water splitting is highly important yet challenging given its large proportion in sunlight. Although upconversion material may photogenerate electrons with sufficient energy, the electron transfer between upconversion material and semiconductor is inef...

Descripción completa

Detalles Bibliográficos
Autores principales: Jia, Dongmei, Li, Xiaoyu, Chi, Qianqian, Low, Jingxiang, Deng, Ping, Wu, Wenbo, Wang, Yikang, Zhu, Kaili, Li, Wenhao, Xu, Mengqiu, Xu, Xudong, Jia, Gan, Ye, Wei, Gao, Peng, Xiong, Yujie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9029198/
https://www.ncbi.nlm.nih.gov/pubmed/35515701
http://dx.doi.org/10.34133/2022/9781453
_version_ 1784691817152774144
author Jia, Dongmei
Li, Xiaoyu
Chi, Qianqian
Low, Jingxiang
Deng, Ping
Wu, Wenbo
Wang, Yikang
Zhu, Kaili
Li, Wenhao
Xu, Mengqiu
Xu, Xudong
Jia, Gan
Ye, Wei
Gao, Peng
Xiong, Yujie
author_facet Jia, Dongmei
Li, Xiaoyu
Chi, Qianqian
Low, Jingxiang
Deng, Ping
Wu, Wenbo
Wang, Yikang
Zhu, Kaili
Li, Wenhao
Xu, Mengqiu
Xu, Xudong
Jia, Gan
Ye, Wei
Gao, Peng
Xiong, Yujie
author_sort Jia, Dongmei
collection PubMed
description Utilization of infrared light in photocatalytic water splitting is highly important yet challenging given its large proportion in sunlight. Although upconversion material may photogenerate electrons with sufficient energy, the electron transfer between upconversion material and semiconductor is inefficient limiting overall photocatalytic performance. In this work, a TiO(2)/graphene quantum dot (GQD) hybrid system has been designed with intimate interface, which enables highly efficient transfer of photogenerated electrons from GQDs to TiO(2). The designed hybrid material with high photogenerated electron density displays photocatalytic activity under infrared light (20 mW cm(−2)) for overall water splitting (H(2): 60.4 μmol g(cat.)(−1) h(−1) and O(2): 30.0 μmol g(cat.)(−1) h(−1)). With infrared light well harnessed, the system offers a solar-to-hydrogen (STH) efficiency of 0.80% in full solar spectrum. This work provides new insight into harnessing charge transfer between upconversion materials and semiconductor photocatalysts and opens a new avenue for designing photocatalysts toward working under infrared light.
format Online
Article
Text
id pubmed-9029198
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher AAAS
record_format MEDLINE/PubMed
spelling pubmed-90291982022-05-04 Direct Electron Transfer from Upconversion Graphene Quantum Dots to TiO(2) Enabling Infrared Light-Driven Overall Water Splitting Jia, Dongmei Li, Xiaoyu Chi, Qianqian Low, Jingxiang Deng, Ping Wu, Wenbo Wang, Yikang Zhu, Kaili Li, Wenhao Xu, Mengqiu Xu, Xudong Jia, Gan Ye, Wei Gao, Peng Xiong, Yujie Research (Wash D C) Research Article Utilization of infrared light in photocatalytic water splitting is highly important yet challenging given its large proportion in sunlight. Although upconversion material may photogenerate electrons with sufficient energy, the electron transfer between upconversion material and semiconductor is inefficient limiting overall photocatalytic performance. In this work, a TiO(2)/graphene quantum dot (GQD) hybrid system has been designed with intimate interface, which enables highly efficient transfer of photogenerated electrons from GQDs to TiO(2). The designed hybrid material with high photogenerated electron density displays photocatalytic activity under infrared light (20 mW cm(−2)) for overall water splitting (H(2): 60.4 μmol g(cat.)(−1) h(−1) and O(2): 30.0 μmol g(cat.)(−1) h(−1)). With infrared light well harnessed, the system offers a solar-to-hydrogen (STH) efficiency of 0.80% in full solar spectrum. This work provides new insight into harnessing charge transfer between upconversion materials and semiconductor photocatalysts and opens a new avenue for designing photocatalysts toward working under infrared light. AAAS 2022-04-13 /pmc/articles/PMC9029198/ /pubmed/35515701 http://dx.doi.org/10.34133/2022/9781453 Text en Copyright © 2022 Dongmei Jia et al. https://creativecommons.org/licenses/by/4.0/Exclusive Licensee Science and Technology Review Publishing House. Distributed under a Creative Commons Attribution License (CC BY 4.0).
spellingShingle Research Article
Jia, Dongmei
Li, Xiaoyu
Chi, Qianqian
Low, Jingxiang
Deng, Ping
Wu, Wenbo
Wang, Yikang
Zhu, Kaili
Li, Wenhao
Xu, Mengqiu
Xu, Xudong
Jia, Gan
Ye, Wei
Gao, Peng
Xiong, Yujie
Direct Electron Transfer from Upconversion Graphene Quantum Dots to TiO(2) Enabling Infrared Light-Driven Overall Water Splitting
title Direct Electron Transfer from Upconversion Graphene Quantum Dots to TiO(2) Enabling Infrared Light-Driven Overall Water Splitting
title_full Direct Electron Transfer from Upconversion Graphene Quantum Dots to TiO(2) Enabling Infrared Light-Driven Overall Water Splitting
title_fullStr Direct Electron Transfer from Upconversion Graphene Quantum Dots to TiO(2) Enabling Infrared Light-Driven Overall Water Splitting
title_full_unstemmed Direct Electron Transfer from Upconversion Graphene Quantum Dots to TiO(2) Enabling Infrared Light-Driven Overall Water Splitting
title_short Direct Electron Transfer from Upconversion Graphene Quantum Dots to TiO(2) Enabling Infrared Light-Driven Overall Water Splitting
title_sort direct electron transfer from upconversion graphene quantum dots to tio(2) enabling infrared light-driven overall water splitting
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9029198/
https://www.ncbi.nlm.nih.gov/pubmed/35515701
http://dx.doi.org/10.34133/2022/9781453
work_keys_str_mv AT jiadongmei directelectrontransferfromupconversiongraphenequantumdotstotio2enablinginfraredlightdrivenoverallwatersplitting
AT lixiaoyu directelectrontransferfromupconversiongraphenequantumdotstotio2enablinginfraredlightdrivenoverallwatersplitting
AT chiqianqian directelectrontransferfromupconversiongraphenequantumdotstotio2enablinginfraredlightdrivenoverallwatersplitting
AT lowjingxiang directelectrontransferfromupconversiongraphenequantumdotstotio2enablinginfraredlightdrivenoverallwatersplitting
AT dengping directelectrontransferfromupconversiongraphenequantumdotstotio2enablinginfraredlightdrivenoverallwatersplitting
AT wuwenbo directelectrontransferfromupconversiongraphenequantumdotstotio2enablinginfraredlightdrivenoverallwatersplitting
AT wangyikang directelectrontransferfromupconversiongraphenequantumdotstotio2enablinginfraredlightdrivenoverallwatersplitting
AT zhukaili directelectrontransferfromupconversiongraphenequantumdotstotio2enablinginfraredlightdrivenoverallwatersplitting
AT liwenhao directelectrontransferfromupconversiongraphenequantumdotstotio2enablinginfraredlightdrivenoverallwatersplitting
AT xumengqiu directelectrontransferfromupconversiongraphenequantumdotstotio2enablinginfraredlightdrivenoverallwatersplitting
AT xuxudong directelectrontransferfromupconversiongraphenequantumdotstotio2enablinginfraredlightdrivenoverallwatersplitting
AT jiagan directelectrontransferfromupconversiongraphenequantumdotstotio2enablinginfraredlightdrivenoverallwatersplitting
AT yewei directelectrontransferfromupconversiongraphenequantumdotstotio2enablinginfraredlightdrivenoverallwatersplitting
AT gaopeng directelectrontransferfromupconversiongraphenequantumdotstotio2enablinginfraredlightdrivenoverallwatersplitting
AT xiongyujie directelectrontransferfromupconversiongraphenequantumdotstotio2enablinginfraredlightdrivenoverallwatersplitting