Cargando…

Stress Concentration of Hybrid Occlusal Splint-Mouthguard during a Simulated Maxillofacial Traumatic Impact: 3D-FEA

Mouthguards (MG) are protective devices that can reduce the risks of facial trauma. However, many athletes do not use them. Additionally, MG wear with coincidental parafunctional activity has not been considered. The aim of this study was to evaluate the stress distribution as a consequence of a dir...

Descripción completa

Detalles Bibliográficos
Autores principales: Tribst, João Paulo Mendes, Dal Piva, Amanda Maria de Oliveira, Kalman, Les
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9029277/
https://www.ncbi.nlm.nih.gov/pubmed/35448059
http://dx.doi.org/10.3390/dj10040065
_version_ 1784691836826157056
author Tribst, João Paulo Mendes
Dal Piva, Amanda Maria de Oliveira
Kalman, Les
author_facet Tribst, João Paulo Mendes
Dal Piva, Amanda Maria de Oliveira
Kalman, Les
author_sort Tribst, João Paulo Mendes
collection PubMed
description Mouthguards (MG) are protective devices that can reduce the risks of facial trauma. However, many athletes do not use them. Additionally, MG wear with coincidental parafunctional activity has not been considered. The aim of this study was to evaluate the stress distribution as a consequence of a direct impact comparing a conventional MG with a novel hybrid appliance (HMG). Using computer-aided design (CAD) software, a human skull was modeled with the teeth inserted into their respective alveolus. The models were divided according to the MG type (conventional or hybrid). The geometries were exported to the computer-aided engineering (CAE) software and the materials were considered isotropic. Fixation was defined at the base of the maxilla. The load was applied using a hockey puck. The total deformation (mm) and the von Mises stress (MPa) results were obtained for the MGs (conventional and hybrid), upper teeth, lower teeth, and maxillary bone. Despite the presence of an MG, it is still possible to observe generated stress in all structures. However, the hybrid design was more efficient than the conventional design in reducing the displacement during the impact and consequently the stress on the upper teeth, lower teeth, and maxillary bone. Higher stress magnitude was more concentrated at the inner portion of the hybrid design than the conventional device. The HMG appliance decreased the stress concentration in the teeth and in the bone, limiting the areas susceptible to injuries to the regions directly impacted by the hockey puck. Although the novel HMG may mitigate injury, some stress will still result, and any possible injury should be evaluated by a dental professional.
format Online
Article
Text
id pubmed-9029277
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-90292772022-04-23 Stress Concentration of Hybrid Occlusal Splint-Mouthguard during a Simulated Maxillofacial Traumatic Impact: 3D-FEA Tribst, João Paulo Mendes Dal Piva, Amanda Maria de Oliveira Kalman, Les Dent J (Basel) Communication Mouthguards (MG) are protective devices that can reduce the risks of facial trauma. However, many athletes do not use them. Additionally, MG wear with coincidental parafunctional activity has not been considered. The aim of this study was to evaluate the stress distribution as a consequence of a direct impact comparing a conventional MG with a novel hybrid appliance (HMG). Using computer-aided design (CAD) software, a human skull was modeled with the teeth inserted into their respective alveolus. The models were divided according to the MG type (conventional or hybrid). The geometries were exported to the computer-aided engineering (CAE) software and the materials were considered isotropic. Fixation was defined at the base of the maxilla. The load was applied using a hockey puck. The total deformation (mm) and the von Mises stress (MPa) results were obtained for the MGs (conventional and hybrid), upper teeth, lower teeth, and maxillary bone. Despite the presence of an MG, it is still possible to observe generated stress in all structures. However, the hybrid design was more efficient than the conventional design in reducing the displacement during the impact and consequently the stress on the upper teeth, lower teeth, and maxillary bone. Higher stress magnitude was more concentrated at the inner portion of the hybrid design than the conventional device. The HMG appliance decreased the stress concentration in the teeth and in the bone, limiting the areas susceptible to injuries to the regions directly impacted by the hockey puck. Although the novel HMG may mitigate injury, some stress will still result, and any possible injury should be evaluated by a dental professional. MDPI 2022-04-06 /pmc/articles/PMC9029277/ /pubmed/35448059 http://dx.doi.org/10.3390/dj10040065 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Communication
Tribst, João Paulo Mendes
Dal Piva, Amanda Maria de Oliveira
Kalman, Les
Stress Concentration of Hybrid Occlusal Splint-Mouthguard during a Simulated Maxillofacial Traumatic Impact: 3D-FEA
title Stress Concentration of Hybrid Occlusal Splint-Mouthguard during a Simulated Maxillofacial Traumatic Impact: 3D-FEA
title_full Stress Concentration of Hybrid Occlusal Splint-Mouthguard during a Simulated Maxillofacial Traumatic Impact: 3D-FEA
title_fullStr Stress Concentration of Hybrid Occlusal Splint-Mouthguard during a Simulated Maxillofacial Traumatic Impact: 3D-FEA
title_full_unstemmed Stress Concentration of Hybrid Occlusal Splint-Mouthguard during a Simulated Maxillofacial Traumatic Impact: 3D-FEA
title_short Stress Concentration of Hybrid Occlusal Splint-Mouthguard during a Simulated Maxillofacial Traumatic Impact: 3D-FEA
title_sort stress concentration of hybrid occlusal splint-mouthguard during a simulated maxillofacial traumatic impact: 3d-fea
topic Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9029277/
https://www.ncbi.nlm.nih.gov/pubmed/35448059
http://dx.doi.org/10.3390/dj10040065
work_keys_str_mv AT tribstjoaopaulomendes stressconcentrationofhybridocclusalsplintmouthguardduringasimulatedmaxillofacialtraumaticimpact3dfea
AT dalpivaamandamariadeoliveira stressconcentrationofhybridocclusalsplintmouthguardduringasimulatedmaxillofacialtraumaticimpact3dfea
AT kalmanles stressconcentrationofhybridocclusalsplintmouthguardduringasimulatedmaxillofacialtraumaticimpact3dfea