Cargando…
TransPhos: A Deep-Learning Model for General Phosphorylation Site Prediction Based on Transformer-Encoder Architecture
Protein phosphorylation is one of the most critical post-translational modifications of proteins in eukaryotes, which is essential for a variety of biological processes. Plenty of attempts have been made to improve the performance of computational predictors for phosphorylation site prediction. Howe...
Autores principales: | Wang, Xun, Zhang, Zhiyuan, Zhang, Chaogang, Meng, Xiangyu, Shi, Xin, Qu, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9029334/ https://www.ncbi.nlm.nih.gov/pubmed/35457080 http://dx.doi.org/10.3390/ijms23084263 |
Ejemplares similares
-
DeepPhos: prediction of protein phosphorylation sites with deep learning
por: Luo, Fenglin, et al.
Publicado: (2019) -
PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update
por: Durek, Pawel, et al.
Publicado: (2010) -
PhosPhAt goes kinases—searchable protein kinase target information in the plant phosphorylation site database PhosPhAt
por: Zulawski, Monika, et al.
Publicado: (2013) -
PhosTransfer: A Deep Transfer Learning Framework for Kinase-Specific Phosphorylation Site Prediction in Hierarchy
por: Xu, Ying, et al.
Publicado: (2020) -
PredPhos: an ensemble framework for structure-based prediction of phosphorylation sites
por: Gao, Yong, et al.
Publicado: (2016)