Cargando…

Effect of Cigarette and E-Cigarette Smoke Condensates on Candida albicans Biofilm Formation and Gene Expression

Smoking triggers environmental changes in the oral cavity and increases the risk of mucosal infections caused by Candida albicans such as oral candidiasis. While cigarette smoke has a significant impact on C. albicans, how e-cigarettes affect this oral pathogen is less clear. Here, we investigated t...

Descripción completa

Detalles Bibliográficos
Autores principales: Haghighi, Farnoosh, Andriasian, Leah, Tran, Nini Chaichanasakul, Lux, Renate
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9029603/
https://www.ncbi.nlm.nih.gov/pubmed/35457494
http://dx.doi.org/10.3390/ijerph19084626
Descripción
Sumario:Smoking triggers environmental changes in the oral cavity and increases the risk of mucosal infections caused by Candida albicans such as oral candidiasis. While cigarette smoke has a significant impact on C. albicans, how e-cigarettes affect this oral pathogen is less clear. Here, we investigated the effect of cigarette and e-cigarette smoke condensates (CSC and ECSC) on C. albicans growth, biofilm formation, and gene expression. Whereas pure nicotine (N) at the minimum inhibitory concentration (MIC, 4 mg/mL) prevented C. albicans growth, enhanced biofilm formation was observed at 0.1 mg/mL. In contrast, at this nicotine sub-MIC (0.1 mg/mL) concentration, CSC and ECSC had no significant effect on C. albicans biofilm formation. Additionally, N, CSC, and ECSC increased the expression of HWP1 and SAP2 genes. The ECSC group exhibited elevated expression levels of the EAP1 and ALS3 genes, compared to the nicotine-free ECSC (−) control. Moreover, our in vitro study illustrated that the antifungal drugs, fluconazole and amphotericin B, alleviated the effect of nicotine on C. albicans gene expression. Overall, the results of the study indicated nicotine from different sources may affect the pathogenic characteristics of C. albicans, including hyphal growth, biofilm formation, and particularly the expression of virulence-related genes.