Cargando…
Application of a Deep Learning System in Pterygium Grading and Further Prediction of Recurrence with Slit Lamp Photographs
Background: The aim of this study was to evaluate the efficacy of a deep learning system in pterygium grading and recurrence prediction. Methods: This was a single center, retrospective study. Slit-lamp photographs, from patients with or without pterygium, were collected to develop an algorithm. Dem...
Autores principales: | Hung, Kuo-Hsuan, Lin, Chihung, Roan, Jinsheng, Kuo, Chang-Fu, Hsiao, Ching-Hsi, Tan, Hsin-Yuan, Chen, Hung-Chi, Ma, David Hui-Kang, Yeh, Lung-Kun, Lee, Oscar Kuang-Sheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9029774/ https://www.ncbi.nlm.nih.gov/pubmed/35453936 http://dx.doi.org/10.3390/diagnostics12040888 |
Ejemplares similares
-
Using Slit-Lamp Images for Deep Learning-Based Identification of Bacterial and Fungal Keratitis: Model Development and Validation with Different Convolutional Neural Networks
por: Hung, Ning, et al.
Publicado: (2021) -
Deep learning algorithms for automatic detection of pterygium using anterior segment photographs from slit-lamp and hand-held cameras
por: Fang, Xiaoling, et al.
Publicado: (2022) -
Deep learning for identifying corneal diseases from ocular surface slit-lamp photographs
por: Gu, Hao, et al.
Publicado: (2020) -
Deep Learning-Based Cataract Detection and Grading from Slit-Lamp and Retro-Illumination Photographs: Model Development and Validation Study
por: Son, Ki Young, et al.
Publicado: (2022) -
The fundus slit lamp
por: Gellrich, Marcus-Matthias
Publicado: (2015)