Cargando…

Non-Invasive Assessment of Arterial Stiffness: Pulse Wave Velocity, Pulse Wave Analysis and Carotid Cross-Sectional Distensibility: Comparison between Methods

Background: The stiffening of large elastic arteries is currently estimated in research and clinical practice by propagative and non-propagative models, as well as parameters derived from aortic pulse waveform analysis. Methods: Common carotid compliance and distensibility were measured by simultane...

Descripción completa

Detalles Bibliográficos
Autores principales: Salvi, Paolo, Valbusa, Filippo, Kearney-Schwartz, Anna, Labat, Carlos, Grillo, Andrea, Parati, Gianfranco, Benetos, Athanase
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9029786/
https://www.ncbi.nlm.nih.gov/pubmed/35456316
http://dx.doi.org/10.3390/jcm11082225
Descripción
Sumario:Background: The stiffening of large elastic arteries is currently estimated in research and clinical practice by propagative and non-propagative models, as well as parameters derived from aortic pulse waveform analysis. Methods: Common carotid compliance and distensibility were measured by simultaneously recording the diameter and pressure changes during the cardiac cycle. The aortic and upper arm arterial distensibility was estimated by measuring carotid–femoral and carotid–radial pulse wave velocity (PWV), respectively. The augmentation index and blood pressure amplification were derived from the analysis of central pulse waveforms, recorded by applanation tonometry directly from the common carotid artery. Results: 75 volunteers were enrolled in this study (50 females, average age 53.5 years). A significant inverse correlation was found between carotid distensibility and carotid–femoral PWV (r = −0.75; p < 0.001), augmentation index (r = −0.63; p < 0.001) and central pulse pressure (r = −0.59; p < 0.001). A strong correlation was found also between the total slope of the diameter/pressure rate carotid curves and aortic distensibility, quantified from the inverse of the square of carotid–femoral PWV (r = 0.67). No correlation was found between carotid distensibility and carotid–radial PWV. Conclusions: This study showed a close correlation between carotid–femoral PWV, evaluating aortic stiffness by using the propagative method, and local carotid cross-sectional distensibility.