Cargando…
Analysis of Privacy-Enhancing Technologies in Open-Source Federated Learning Frameworks for Driver Activity Recognition
Wearable devices and smartphones that are used to monitor the activity and the state of the driver collect a lot of sensitive data such as audio, video, location and even health data. The analysis and processing of such data require observing the strict legal requirements for personal data security...
Autores principales: | Novikova, Evgenia, Fomichov, Dmitry, Kholod, Ivan, Filippov, Evgeny |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9029817/ https://www.ncbi.nlm.nih.gov/pubmed/35458968 http://dx.doi.org/10.3390/s22082983 |
Ejemplares similares
-
Open-Source Federated Learning Frameworks for IoT: A Comparative Review and Analysis
por: Kholod, Ivan, et al.
Publicado: (2020) -
A federated graph neural network framework for privacy-preserving personalization
por: Wu, Chuhan, et al.
Publicado: (2022) -
Privacy Policies of IoT Devices: Collection and Analysis
por: Kuznetsov, Mikhail, et al.
Publicado: (2022) -
Research on the Privacy Security of Face Recognition Technology
por: Pang, Luning
Publicado: (2022) -
Privacy-first health research with federated learning
por: Sadilek, Adam, et al.
Publicado: (2021)