Cargando…
Object-Level Visual-Text Correlation Graph Hashing for Unsupervised Cross-Modal Retrieval
The core of cross-modal hashing methods is to map high dimensional features into binary hash codes, which can then efficiently utilize the Hamming distance metric to enhance retrieval efficiency. Recent development emphasizes the advantages of the unsupervised cross-modal hashing technique, since it...
Autores principales: | Shi, Ge, Li, Feng, Wu, Lifang, Chen, Yukun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9029824/ https://www.ncbi.nlm.nih.gov/pubmed/35458906 http://dx.doi.org/10.3390/s22082921 |
Ejemplares similares
-
CLIP-Based Adaptive Graph Attention Network for Large-Scale Unsupervised Multi-Modal Hashing Retrieval
por: Li, Yewen, et al.
Publicado: (2023) -
Deep Semantic-Preserving Reconstruction Hashing for Unsupervised Cross-Modal Retrieval
por: Cheng, Shuli, et al.
Publicado: (2020) -
Deep Unsupervised Hashing for Large-Scale Cross-Modal Retrieval Using Knowledge Distillation Model
por: Li, Mingyong, et al.
Publicado: (2021) -
Semantics-Reconstructing Hashing for Cross-Modal Retrieval
por: Zhang, Peng-Fei, et al.
Publicado: (2020) -
Cross-Modal Contrastive Hashing Retrieval for Infrared Video and EEG
por: Han, Jianan, et al.
Publicado: (2022)