Cargando…

Smartphone-Enabled versus Conventional Otoscopy in Detecting Middle Ear Disease: A Meta-Analysis

Traditional otoscopy has some limitations, including poor visualization and inadequate time for evaluation in suboptimal environments. Smartphone-enabled otoscopy may improve examination quality and serve as a potential diagnostic tool for middle ear diseases using a telemedicine approach. The main...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Chih-Hao, Huang, Chii-Yuan, Cheng, Hsiu-Lien, Lin, Heng-Yu Haley, Chu, Yuan-Chia, Chang, Chun-Yu, Lai, Ying-Hui, Wang, Mao-Che, Cheng, Yen-Fu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9029949/
https://www.ncbi.nlm.nih.gov/pubmed/35454020
http://dx.doi.org/10.3390/diagnostics12040972
Descripción
Sumario:Traditional otoscopy has some limitations, including poor visualization and inadequate time for evaluation in suboptimal environments. Smartphone-enabled otoscopy may improve examination quality and serve as a potential diagnostic tool for middle ear diseases using a telemedicine approach. The main objectives are to compare the correctness of smartphone-enabled otoscopy and traditional otoscopy and to evaluate the diagnostic confidence of the examiner via meta-analysis. From inception through 20 January 2022, the Cochrane Library, PubMed, EMBASE, Web of Science, and Scopus databases were searched. Studies comparing smartphone-enabled otoscopy with traditional otoscopy regarding the outcome of interest were eligible. The relative risk (RR) for the rate of correctness in diagnosing ear conditions and the standardized mean difference (SMD) in diagnostic confidence were extracted. Sensitivity analysis and trial sequential analyses (TSAs) were conducted to further examine the pooled results. Study quality was evaluated by using the revised Cochrane risk of bias tool 2. Consequently, a total of 1840 examinees were divided into the smartphone-enabled otoscopy group and the traditional otoscopy group. Overall, the pooled result showed that smartphone-enabled otoscopy was associated with higher correctness than traditional otoscopy (RR, 1.26; 95% CI, 1.06 to 1.51; p = 0.01; I(2) = 70.0%). Consistently significant associations were also observed in the analysis after excluding the simulation study (RR, 1.10; 95% CI, 1.00 to 1.21; p = 0.04; I(2) = 0%) and normal ear conditions (RR, 1.18; 95% CI, 1.01 to 1.40; p = 0.04; I(2) = 65.0%). For the confidence of examiners using both otoscopy methods, the pooled result was nonsignificant between the smartphone-enabled otoscopy and traditional otoscopy groups (SMD, 0.08; 95% CI, -0.24 to 0.40; p = 0.61; I(2) = 16.3%). In conclusion, smartphone-enabled otoscopy was associated with a higher rate of correctness in the detection of middle ear diseases, and in patients with otologic complaints, the use of smartphone-enabled otoscopy may be considered. More large-scale studies should be performed to consolidate the results.