Cargando…
FDNet: Knowledge and Data Fusion-Driven Deep Neural Network for Coal Burst Prediction
Coal burst prediction is an important research hotspot in coal mine production safety. This paper presents FDNet, which is a knowledge and data fusion-driven deep neural network for coal burst prediction. The main idea of FDNet is to extract explicit features based on the existing mine seismic physi...
Autores principales: | Cao, Anye, Liu, Yaoqi, Yang, Xu, Li, Sen, Liu, Yapeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030050/ https://www.ncbi.nlm.nih.gov/pubmed/35459073 http://dx.doi.org/10.3390/s22083088 |
Ejemplares similares
-
FDNet: An end-to-end fusion decomposition network for infrared and visible images
por: Di, Jing, et al.
Publicado: (2023) -
Effects of Proximate
Analysis on Coal Ash Fusion Temperatures:
An Application of Artificial Neural Network
por: Onifade, Moshood, et al.
Publicado: (2023) -
Investigation on the pore characteristics of coal specimens with bursting proneness
por: Li, Yutao, et al.
Publicado: (2019) -
Evaluation of coal seam floor water bursting in multi-aquifer Gequan coal mine, China
por: Lv, Situ, et al.
Publicado: (2022) -
Multi-Scale Feature Fusion for Coal-Rock Recognition Based on Completed Local Binary Pattern and Convolution Neural Network
por: Liu, Xiaoyang, et al.
Publicado: (2019)