Cargando…
Implementation approaches and barriers for rule-based and machine learning-based sepsis risk prediction tools: a qualitative study
OBJECTIVE: Many options are currently available for sepsis surveillance clinical decision support (CDS) from electronic medical record (EMR) vendors, third party, and homegrown models drawing on rule-based (RB) and machine learning (ML) algorithms. This study explores sepsis CDS implementation from...
Autores principales: | Joshi, Mugdha, Mecklai, Keizra, Rozenblum, Ronen, Samal, Lipika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030109/ https://www.ncbi.nlm.nih.gov/pubmed/35474719 http://dx.doi.org/10.1093/jamiaopen/ooac022 |
Ejemplares similares
-
Implementation of a scalable, web-based, automated clinical decision support
risk-prediction tool for chronic kidney disease using C-CDA and application programming
interfaces
por: Samal, Lipika, et al.
Publicado: (2017) -
MAINE: a web tool for multi-omics feature selection and rule-based data exploration
por: Gruca, Aleksandra, et al.
Publicado: (2021) -
myChEMBL: a virtual machine implementation of open data and cheminformatics tools
por: Ochoa, Rodrigo, et al.
Publicado: (2014) -
A rule based solution to co-reference resolution in clinical text
por: Chen, Ping, et al.
Publicado: (2013) -
Machine learning for early detection of sepsis: an internal and temporal validation study
por: Bedoya, Armando D, et al.
Publicado: (2020)