Cargando…
Temporal and Spatial Analysis of Alzheimer’s Disease Based on an Improved Convolutional Neural Network and a Resting-State FMRI Brain Functional Network
Most current research on Alzheimer’s disease (AD) is based on transverse measurements. Given the nature of neurodegeneration in AD progression, observing longitudinal changes in the structural features of brain networks over time may improve the accuracy of the predicted transformation and provide a...
Autores principales: | Sun, Haijing, Wang, Anna, He, Shanshan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030143/ https://www.ncbi.nlm.nih.gov/pubmed/35457373 http://dx.doi.org/10.3390/ijerph19084508 |
Ejemplares similares
-
Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks
por: Karahanoğlu, Fikret Işik, et al.
Publicado: (2015) -
Application of Convolutional Recurrent Neural Network for Individual Recognition Based on Resting State fMRI Data
por: Wang, Lebo, et al.
Publicado: (2019) -
Individualized spatial network predictions using Siamese convolutional neural networks: A resting-state fMRI study of over 11,000 unaffected individuals
por: Hassanzadeh, Reihaneh, et al.
Publicado: (2022) -
Explainable fMRI‐based brain decoding via spatial temporal‐pyramid graph convolutional network
por: Ye, Ziyuan, et al.
Publicado: (2023) -
Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture
por: Meszlényi, Regina J., et al.
Publicado: (2017)