Cargando…
Automatic Muscle Artifacts Identification and Removal from Single-Channel EEG Using Wavelet Transform with Meta-Heuristically Optimized Non-Local Means Filter
Electroencephalogram (EEG) signals may get easily contaminated by muscle artifacts, which may lead to wrong interpretation in the brain–computer interface (BCI) system as well as in various medical diagnoses. The main objective of this paper is to remove muscle artifacts without distorting the infor...
Autores principales: | Phadikar, Souvik, Sinha, Nidul, Ghosh, Rajdeep, Ghaderpour, Ebrahim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030243/ https://www.ncbi.nlm.nih.gov/pubmed/35458940 http://dx.doi.org/10.3390/s22082948 |
Ejemplares similares
-
A Novel Baseline Removal Paradigm for Subject-Independent Features in Emotion Classification Using EEG
por: Ahmed, Md. Zaved Iqubal, et al.
Publicado: (2023) -
Automated Feature Extraction on AsMap for Emotion Classification Using EEG
por: Ahmed, Md. Zaved Iqubal, et al.
Publicado: (2022) -
SAM 40: Dataset of 40 subject EEG recordings to monitor the induced-stress while performing Stroop color-word test, arithmetic task, and mirror image recognition task
por: Ghosh, Rajdeep, et al.
Publicado: (2022) -
Circulant Singular Spectrum Analysis and Discrete Wavelet Transform for Automated Removal of EOG Artifacts from EEG Signals
por: Yedukondalu, Jammisetty, et al.
Publicado: (2023) -
Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals
por: Winkler, Irene, et al.
Publicado: (2011)