Cargando…

Tuning of Magnetic Damping in Y(3)Fe(5)O(12)/Metal Bilayers for Spin-Wave Conduit Termination

In this work, we investigate the structural and dynamic magnetic properties of yttrium iron garnet (YIG) films grown onto gadolinium gallium garnet (GGG) substrates with thin platinum, iridium, and gold spacer layers. Separation of the YIG film from the GGG substrate by a metal film strongly affects...

Descripción completa

Detalles Bibliográficos
Autores principales: Krysztofik, Adam, Kuznetsov, Nikolai, Qin, Huajun, Flajšman, Lukáš, Coy, Emerson, van Dijken, Sebastiaan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030244/
https://www.ncbi.nlm.nih.gov/pubmed/35454506
http://dx.doi.org/10.3390/ma15082814
_version_ 1784692091201257472
author Krysztofik, Adam
Kuznetsov, Nikolai
Qin, Huajun
Flajšman, Lukáš
Coy, Emerson
van Dijken, Sebastiaan
author_facet Krysztofik, Adam
Kuznetsov, Nikolai
Qin, Huajun
Flajšman, Lukáš
Coy, Emerson
van Dijken, Sebastiaan
author_sort Krysztofik, Adam
collection PubMed
description In this work, we investigate the structural and dynamic magnetic properties of yttrium iron garnet (YIG) films grown onto gadolinium gallium garnet (GGG) substrates with thin platinum, iridium, and gold spacer layers. Separation of the YIG film from the GGG substrate by a metal film strongly affects the crystalline structure of YIG and its magnetic damping. Despite the presence of structural defects, however, the YIG films exhibit a clear ferromagnetic resonance response. The ability to tune the magnetic damping without substantial changes to magnetization offers attractive prospects for the design of complex spin-wave conduits. We show that the insertion of a 1-nm-thick metal layer between YIG and GGG already increases the effective damping parameter enough to efficiently absorb spin waves. This bilayer structure can therefore be utilized for magnonic waveguide termination. Investigating the dispersionless propagation of spin-wave packets, we demonstrate that a damping unit consisting of the YIG/metal bilayers can dissipate incident spin-wave signals with reflection coefficient R < 0.1 at a distance comparable to the spatial width of the wave packet.
format Online
Article
Text
id pubmed-9030244
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-90302442022-04-23 Tuning of Magnetic Damping in Y(3)Fe(5)O(12)/Metal Bilayers for Spin-Wave Conduit Termination Krysztofik, Adam Kuznetsov, Nikolai Qin, Huajun Flajšman, Lukáš Coy, Emerson van Dijken, Sebastiaan Materials (Basel) Article In this work, we investigate the structural and dynamic magnetic properties of yttrium iron garnet (YIG) films grown onto gadolinium gallium garnet (GGG) substrates with thin platinum, iridium, and gold spacer layers. Separation of the YIG film from the GGG substrate by a metal film strongly affects the crystalline structure of YIG and its magnetic damping. Despite the presence of structural defects, however, the YIG films exhibit a clear ferromagnetic resonance response. The ability to tune the magnetic damping without substantial changes to magnetization offers attractive prospects for the design of complex spin-wave conduits. We show that the insertion of a 1-nm-thick metal layer between YIG and GGG already increases the effective damping parameter enough to efficiently absorb spin waves. This bilayer structure can therefore be utilized for magnonic waveguide termination. Investigating the dispersionless propagation of spin-wave packets, we demonstrate that a damping unit consisting of the YIG/metal bilayers can dissipate incident spin-wave signals with reflection coefficient R < 0.1 at a distance comparable to the spatial width of the wave packet. MDPI 2022-04-12 /pmc/articles/PMC9030244/ /pubmed/35454506 http://dx.doi.org/10.3390/ma15082814 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Krysztofik, Adam
Kuznetsov, Nikolai
Qin, Huajun
Flajšman, Lukáš
Coy, Emerson
van Dijken, Sebastiaan
Tuning of Magnetic Damping in Y(3)Fe(5)O(12)/Metal Bilayers for Spin-Wave Conduit Termination
title Tuning of Magnetic Damping in Y(3)Fe(5)O(12)/Metal Bilayers for Spin-Wave Conduit Termination
title_full Tuning of Magnetic Damping in Y(3)Fe(5)O(12)/Metal Bilayers for Spin-Wave Conduit Termination
title_fullStr Tuning of Magnetic Damping in Y(3)Fe(5)O(12)/Metal Bilayers for Spin-Wave Conduit Termination
title_full_unstemmed Tuning of Magnetic Damping in Y(3)Fe(5)O(12)/Metal Bilayers for Spin-Wave Conduit Termination
title_short Tuning of Magnetic Damping in Y(3)Fe(5)O(12)/Metal Bilayers for Spin-Wave Conduit Termination
title_sort tuning of magnetic damping in y(3)fe(5)o(12)/metal bilayers for spin-wave conduit termination
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030244/
https://www.ncbi.nlm.nih.gov/pubmed/35454506
http://dx.doi.org/10.3390/ma15082814
work_keys_str_mv AT krysztofikadam tuningofmagneticdampinginy3fe5o12metalbilayersforspinwaveconduittermination
AT kuznetsovnikolai tuningofmagneticdampinginy3fe5o12metalbilayersforspinwaveconduittermination
AT qinhuajun tuningofmagneticdampinginy3fe5o12metalbilayersforspinwaveconduittermination
AT flajsmanlukas tuningofmagneticdampinginy3fe5o12metalbilayersforspinwaveconduittermination
AT coyemerson tuningofmagneticdampinginy3fe5o12metalbilayersforspinwaveconduittermination
AT vandijkensebastiaan tuningofmagneticdampinginy3fe5o12metalbilayersforspinwaveconduittermination