Cargando…

Identification of Multiple Mechanical Properties of Laminates from a Single Compressive Test

In-plane elastic and interlaminar properties of composite laminates are commonly obtained through separate experiments. In this paper, a simultaneous identification method for both properties using a single experiment is proposed. The mechanical properties of laminates were treated as uncertainties...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Bo, Yan, Huai, Wang, Boyi, Yang, Qiang, Meng, Songhe, Huo, Yanyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030247/
https://www.ncbi.nlm.nih.gov/pubmed/35454642
http://dx.doi.org/10.3390/ma15082950
Descripción
Sumario:In-plane elastic and interlaminar properties of composite laminates are commonly obtained through separate experiments. In this paper, a simultaneous identification method for both properties using a single experiment is proposed. The mechanical properties of laminates were treated as uncertainties and Bayesian inference was employed with measured strain-load curves in compression tests of laminates with embedded delamination. The strain–load curves were separated into two stages: the pre-delamination stage and the post-delamination stage. Sensitivity analysis was carried out to determine the critical properties at different stages, in order to alleviate the ill-posed problem in inference. Results showed that the in-plane Young’s modulus and shear modulus in elastic properties are dominant in the pre-delamination stage, and the interlaminar strength and type I fracture toughness in interlaminar properties are dominant in the post-delamination stage. Five times of property identification were carried out; the maximum coefficient of variation of identified properties was less than 1.11%, and the maximum error between the mean values of the identified properties and the ones from standard experiments was less than 5.44%. The proposed method can reduce time and cost in obtaining multiple mechanical properties of laminates.