Cargando…

Network of gold conjugates for enhanced sensitive immunochromatographic assays of troponins

Highly sensitive detection of cardiac troponins I and T (cTnI and cTnT) was completed by immunochromatography with double amplification, through the binding of functionalized gold nanoparticles (GNPs). The robust nature of the approach, based on the formation of nanoparticle networks through the bio...

Descripción completa

Detalles Bibliográficos
Autores principales: Taranova, Nadezhda A., Slobodenuyk, Vladislav D., Zherdev, Anatoly V., Dzantiev, Boris B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030257/
https://www.ncbi.nlm.nih.gov/pubmed/35479181
http://dx.doi.org/10.1039/d1ra02212a
Descripción
Sumario:Highly sensitive detection of cardiac troponins I and T (cTnI and cTnT) was completed by immunochromatography with double amplification, through the binding of functionalized gold nanoparticles (GNPs). The robust nature of the approach, based on the formation of nanoparticle networks through the biotin–streptavidin interaction, was confirmed; the choice of the best assay parameters for maximal increase in ICA sensitivity was demonstrated. A bifunctional conjugate of GNPs with biotinylated specific IgG and two auxiliary conjugates, GNP–biotin and GNP–streptavidin, form three-component aggregates in the analytical zone of the test strip. The inclusion of abundant gold labels in the resulting immune complex leads to an amplified colorimetric signal. The limits of detection (LoDs) of cTnI and cTnT were 0.9 and 0.4 ng mL(−1), respectively, which is 3 times lower than the LoDs of more commonly used systems. Visual LoDs were 10-fold lower in concentration. The enhancement has been realized both in single and double assay formats; analysis of cTnI and cTnT presented the same characteristics.