Cargando…

MdMAPKKK1 Regulates Apple Resistance to Botryosphaeria dothidea by Interacting with MdBSK1

Plant MAPK cascade performs a critical role in the regulation of plant immunity and disease resistance. Although the function of MAPK cascade in immunity regulation is partially conserved between different species, the mechanism varies in different host and pathogen combinations. To date, the MAPK c...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Nan, Liu, Yingshuang, Dong, Chaohua, Zhang, Yugang, Bai, Suhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030329/
https://www.ncbi.nlm.nih.gov/pubmed/35457232
http://dx.doi.org/10.3390/ijms23084415
Descripción
Sumario:Plant MAPK cascade performs a critical role in the regulation of plant immunity and disease resistance. Although the function of MAPK cascade in immunity regulation is partially conserved between different species, the mechanism varies in different host and pathogen combinations. To date, the MAPK cascade function of woody plants in the regulation of disease resistance has seldom been reported. Here, we present evidence to show that apple MdMAPKKK1 performed an important role in the regulation of apple resistance to Botryosphaeria dothidea, the causal agent of apple ring rot. B. dothidea infection leads to enhanced MdMAPKKK1 expression and MAPK cascade activation, indicating that the MAPK cascade is involved in the defense against B. dothidea. MdMAPKKK1 overexpression-induced pathogen-independent cell death. MdMAPKKK1 silencing decreases the resistance of apple calli and fruits to B. dothidea. Further analysis indicates that MdMAPKKK1 can bind MdBSK1 and is likely phosphorylated by it. The MdBSK1-mediated phosphorylation of MdMAPKKK1 is important for resistance to B. dothidea. These results collectively indicate that apple resistance to B. dothidea is regulated by the interaction between MAPKKK1 and MdBSK1.