Cargando…
Bandgap tuning strategy by cations and halide ions of lead halide perovskites learned from machine learning
Bandgap engineering of lead halide perovskite materials is critical to achieve highly efficient and stable perovskite solar cells and color tunable stable perovskite light-emitting diodes. Herein, we propose the use of machine learning as a tool to predict the bandgap of the perovskite materials fro...
Autores principales: | Li, Yaoyao, Lu, Yao, Huo, Xiaomin, Wei, Dong, Meng, Juan, Dong, Jie, Qiao, Bo, Zhao, Suling, Xu, Zheng, Song, Dandan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030536/ https://www.ncbi.nlm.nih.gov/pubmed/35481197 http://dx.doi.org/10.1039/d1ra03117a |
Ejemplares similares
-
Predicting the photon energy of quasi-2D lead halide perovskites from the precursor composition through machine learning
por: Wang, Wei, et al.
Publicado: (2022) -
Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites
por: Tan, Hairen, et al.
Publicado: (2018) -
Wide-Bandgap Halide Perovskites for Indoor Photovoltaics
por: Jagadamma, Lethy Krishnan, et al.
Publicado: (2021) -
Wide‐Bandgap Organic–Inorganic Lead Halide Perovskite Solar Cells
por: Tong, Yao, et al.
Publicado: (2022) -
Efficient Wide-Bandgap Mixed-Cation and Mixed-Halide
Perovskite Solar Cells by Vacuum Deposition
por: Gil-Escrig, Lidón, et al.
Publicado: (2021)