Cargando…
S-NER: A Concise and Efficient Span-Based Model for Named Entity Recognition
Named entity recognition (NER) is a task that seeks to recognize entities in raw texts and is a precondition for a series of downstream NLP tasks. Traditionally, prior NER models use the sequence labeling mechanism which requires label dependency captured by the conditional random fields (CRFs). How...
Autores principales: | Yu, Jie, Ji, Bin, Li, Shasha, Ma, Jun, Liu, Huijun, Xu, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030542/ https://www.ncbi.nlm.nih.gov/pubmed/35458837 http://dx.doi.org/10.3390/s22082852 |
Ejemplares similares
-
DroNER: Dataset for drone named entity recognition
por: Silalahi, Swardiantara, et al.
Publicado: (2023) -
EduNER: a Chinese named entity recognition dataset for education research
por: Li, Xu, et al.
Publicado: (2023) -
CheNER: chemical named entity recognizer
por: Usié, Anabel, et al.
Publicado: (2014) -
Deep learning with language models improves named entity recognition for PharmaCoNER
por: Sun, Cong, et al.
Publicado: (2021) -
SciNER: Extracting Named Entities from Scientific Literature
por: Hong, Zhi, et al.
Publicado: (2020)