Cargando…
Electronic and optical properties of silicene on GaAs(111) with hydrogen intercalation: a first-principles study
In this paper, we investigated the electronic and optical properties of silicene on GaAs(111) substrates (silicene/HGaAs) on the basis of first-principles density functional theory. The hydrogen intercalation introduced substantially weakened the interaction between silicene and the GaAs(111) substr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030609/ https://www.ncbi.nlm.nih.gov/pubmed/35481181 http://dx.doi.org/10.1039/d1ra01959g |
_version_ | 1784692183788421120 |
---|---|
author | Yu, Ting Zhang, He Li, Dan Lu, Yanwu |
author_facet | Yu, Ting Zhang, He Li, Dan Lu, Yanwu |
author_sort | Yu, Ting |
collection | PubMed |
description | In this paper, we investigated the electronic and optical properties of silicene on GaAs(111) substrates (silicene/HGaAs) on the basis of first-principles density functional theory. The hydrogen intercalation introduced substantially weakened the interaction between silicene and the GaAs(111) substrate and induced considerable bandgaps in silicene/HGaAs heterostructures. The effects of the interlayer spacing (L) between silicene and the substrate, silicene buckling height (h), biaxial strain (ε), and external electric field (F) on the electronic properties were also considered. Our results showed that the electronic properties of silicene/HGaAs heterostructures could be controlled by adjusting L and h and applying ε and an external F. Silicene/HGaAs heterostructures possessed the typical optical absorption properties of freestanding silicene and had high absorption coefficients. Besides, some strong peaks of absorption spectra and energy loss spectra existed in the ultraviolet light region, which showed that silicene/HGaAs heterostructures had evident enhancement in the ultraviolet light region. Results laid a theoretical foundation for the study of the electronic and optical properties and applications of silicene on semiconductor substrate devices. |
format | Online Article Text |
id | pubmed-9030609 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90306092022-04-26 Electronic and optical properties of silicene on GaAs(111) with hydrogen intercalation: a first-principles study Yu, Ting Zhang, He Li, Dan Lu, Yanwu RSC Adv Chemistry In this paper, we investigated the electronic and optical properties of silicene on GaAs(111) substrates (silicene/HGaAs) on the basis of first-principles density functional theory. The hydrogen intercalation introduced substantially weakened the interaction between silicene and the GaAs(111) substrate and induced considerable bandgaps in silicene/HGaAs heterostructures. The effects of the interlayer spacing (L) between silicene and the substrate, silicene buckling height (h), biaxial strain (ε), and external electric field (F) on the electronic properties were also considered. Our results showed that the electronic properties of silicene/HGaAs heterostructures could be controlled by adjusting L and h and applying ε and an external F. Silicene/HGaAs heterostructures possessed the typical optical absorption properties of freestanding silicene and had high absorption coefficients. Besides, some strong peaks of absorption spectra and energy loss spectra existed in the ultraviolet light region, which showed that silicene/HGaAs heterostructures had evident enhancement in the ultraviolet light region. Results laid a theoretical foundation for the study of the electronic and optical properties and applications of silicene on semiconductor substrate devices. The Royal Society of Chemistry 2021-04-30 /pmc/articles/PMC9030609/ /pubmed/35481181 http://dx.doi.org/10.1039/d1ra01959g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Yu, Ting Zhang, He Li, Dan Lu, Yanwu Electronic and optical properties of silicene on GaAs(111) with hydrogen intercalation: a first-principles study |
title | Electronic and optical properties of silicene on GaAs(111) with hydrogen intercalation: a first-principles study |
title_full | Electronic and optical properties of silicene on GaAs(111) with hydrogen intercalation: a first-principles study |
title_fullStr | Electronic and optical properties of silicene on GaAs(111) with hydrogen intercalation: a first-principles study |
title_full_unstemmed | Electronic and optical properties of silicene on GaAs(111) with hydrogen intercalation: a first-principles study |
title_short | Electronic and optical properties of silicene on GaAs(111) with hydrogen intercalation: a first-principles study |
title_sort | electronic and optical properties of silicene on gaas(111) with hydrogen intercalation: a first-principles study |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030609/ https://www.ncbi.nlm.nih.gov/pubmed/35481181 http://dx.doi.org/10.1039/d1ra01959g |
work_keys_str_mv | AT yuting electronicandopticalpropertiesofsiliceneongaas111withhydrogenintercalationafirstprinciplesstudy AT zhanghe electronicandopticalpropertiesofsiliceneongaas111withhydrogenintercalationafirstprinciplesstudy AT lidan electronicandopticalpropertiesofsiliceneongaas111withhydrogenintercalationafirstprinciplesstudy AT luyanwu electronicandopticalpropertiesofsiliceneongaas111withhydrogenintercalationafirstprinciplesstudy |