Cargando…
Applying Hybrid Deep Neural Network for the Recognition of Sign Language Words Used by the Deaf COVID-19 Patients
The rapid spread of the novel corona virus disease (COVID-19) has disrupted the traditional clinical services all over the world. Hospitals and healthcare centers have taken extreme care to minimize the risk of exposure to the virus by restricting the visitors and relatives of the patients. The dram...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030689/ https://www.ncbi.nlm.nih.gov/pubmed/35492959 http://dx.doi.org/10.1007/s13369-022-06843-0 |
Sumario: | The rapid spread of the novel corona virus disease (COVID-19) has disrupted the traditional clinical services all over the world. Hospitals and healthcare centers have taken extreme care to minimize the risk of exposure to the virus by restricting the visitors and relatives of the patients. The dramatic changes happened in the healthcare norms have made it hard for the deaf patients to communicate and receive appropriate care. This paper reports a work on automatic sign language recognition that can mitigate the communication barrier between the deaf patients and the healthcare workers in India. Since hand gestures are the most expressive components of a sign language vocabulary, a novel dataset of dynamic hand gestures for the Indian sign language (ISL) words commonly used for emergency communication by deaf COVID-19 positive patients is proposed. A hybrid model of deep convolutional long short-term memory network has been utilized for the recognition of the proposed hand gestures and achieved an average accuracy of 83.36%. The model performance has been further validated on an alternative ISL dataset as well as a benchmarking hand gesture dataset and obtained average accuracies of [Formula: see text] and [Formula: see text] , respectively. |
---|