Cargando…
Smart and Rapid Design of Nanophotonic Structures by an Adaptive and Regularized Deep Neural Network
The design of nanophotonic structures based on deep learning is emerging rapidly in the research community. Design methods using Deep Neural Networks (DNN) are outperforming conventional physics-based simulations performed iteratively by human experts. Here, a self-adaptive and regularized DNN based...
Autores principales: | Li, Renjie, Gu, Xiaozhe, Shen, Yuanwen, Li, Ke, Li, Zhen, Zhang, Zhaoyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030763/ https://www.ncbi.nlm.nih.gov/pubmed/35458079 http://dx.doi.org/10.3390/nano12081372 |
Ejemplares similares
-
Nanophotonic particle simulation and inverse design using artificial neural networks
por: Peurifoy, John, et al.
Publicado: (2018) -
Artificial neural networks enabled by nanophotonics
por: Zhang, Qiming, et al.
Publicado: (2019) -
POViT: Vision Transformer for Multi-Objective Design and Characterization of Photonic Crystal Nanocavities
por: Chen, Xinyu, et al.
Publicado: (2022) -
Fabrication-constrained nanophotonic inverse design
por: Piggott, Alexander Y., et al.
Publicado: (2017) -
Nanophotonics
por: McGurn, Arthur
Publicado: (2018)