Cargando…
Using an Unsupervised Clustering Model to Detect the Early Spread of SARS-CoV-2 Worldwide
Deciphering the population structure of SARS-CoV-2 is critical to inform public health management and reduce the risk of future dissemination. With the continuous accruing of SARS-CoV-2 genomes worldwide, discovering an effective way to group these genomes is critical for organizing the landscape of...
Autores principales: | Li, Yawei, Liu, Qingyun, Zeng, Zexian, Luo, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030792/ https://www.ncbi.nlm.nih.gov/pubmed/35456454 http://dx.doi.org/10.3390/genes13040648 |
Ejemplares similares
-
Unsupervised clustering analysis of SARS-Cov-2 population structure reveals six major subtypes at early stage across the world
por: Li, Yawei, et al.
Publicado: (2021) -
Unsupervised clustering of SARS-CoV-2 using deep convolutional autoencoder
por: Sherif, Fayroz F., et al.
Publicado: (2022) -
Worldwide SARS-CoV-2 haplotype distribution in early pandemic
por: Cairo, Andrea, et al.
Publicado: (2022) -
Review of the early reports of the epidemiological characteristics of the B.1.1.7 variant of SARS-CoV-2 and its spread worldwide
por: Kim, Yeonju, et al.
Publicado: (2021) -
HaploCoV: unsupervised classification and rapid detection of novel emerging variants of SARS-CoV-2
por: Chiara, Matteo, et al.
Publicado: (2023)